OPT OpenIR  > 瞬态光学研究室
Reconstruction of structured illumination microscopy with an untrained neural network
Liu, Xin1; Li, Jinze2; Fang, Xiang1; Li, Jiaoyue1; Zheng, Juanjuan1,3; Li, Jianlang1; Ali, Nauman1; Zuo, Chao1,4; Gao, Peng1; An, Sha1
作者部门瞬态光学研究室
2023-06-15
发表期刊OPTICS COMMUNICATIONS
ISSN0030-4018;1873-0310
卷号537
产权排序3
摘要

Structured illumination microscopy (SIM) is one of super-resolution optical microscopic techniques, and it has been widely used in biological research. In this paper, a physics-driven deep image prior framework for super-resolution reconstruction of SIM (entitled DIP-SIM) is proposed. DIP-SIM does not rely on a large number of labeled data, and the output becomes more interpretable due to the intrinsic constraint of a physical model. Both the simulation and experiment verify that DIP-SIM can reconstruct a super-resolution image with a quality comparable to conventional SIM. Of note, it allows for super-resolution reconstruction from three raw images for two-orientation SIM and four raw images for three-orientation SIM, and hence it has a much faster imaging speed and lower photobleaching compared with the traditional SIM. We can envisage that the proposed method can be applied to chemistry and biomedical fields, etc.

关键词Structured illumination microscopy Deep learning Neural network Super-resolution Image reconstruction
DOI10.1016/j.optcom.2023.129431
收录类别SCI
语种英语
WOS记录号WOS:001162906900001
出版者ELSEVIER
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/97228
专题瞬态光学研究室
通讯作者Zuo, Chao; Gao, Peng; An, Sha
作者单位1.Xidian Univ, Sch Phys, Xian, Peoples R China
2.Xidian Univ, Sch Optoelect Engn, Xian 710071, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
4.Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Smart Computat Imaging Lab SCILab, Nanjing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Xin,Li, Jinze,Fang, Xiang,et al. Reconstruction of structured illumination microscopy with an untrained neural network[J]. OPTICS COMMUNICATIONS,2023,537.
APA Liu, Xin.,Li, Jinze.,Fang, Xiang.,Li, Jiaoyue.,Zheng, Juanjuan.,...&An, Sha.(2023).Reconstruction of structured illumination microscopy with an untrained neural network.OPTICS COMMUNICATIONS,537.
MLA Liu, Xin,et al."Reconstruction of structured illumination microscopy with an untrained neural network".OPTICS COMMUNICATIONS 537(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Reconstruction of st(3641KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Xin]的文章
[Li, Jinze]的文章
[Fang, Xiang]的文章
百度学术
百度学术中相似的文章
[Liu, Xin]的文章
[Li, Jinze]的文章
[Fang, Xiang]的文章
必应学术
必应学术中相似的文章
[Liu, Xin]的文章
[Li, Jinze]的文章
[Fang, Xiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。