Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis | |
Liu, Zengxin1,2; Ma, Caiwen1![]() | |
作者部门 | 光电跟踪与测量技术研究室 |
2024-01 | |
发表期刊 | APPLIED SCIENCES-BASEL
![]() |
ISSN | 2076-3417 |
卷号 | 14期号:2 |
产权排序 | 1 |
摘要 | Biomedical image segmentation plays a pivotal role in medical imaging, facilitating precise identification and delineation of anatomical structures and abnormalities. This review explores the application of the Denoising Diffusion Probabilistic Model (DDPM) in the realm of biomedical image segmentation. DDPM, a probabilistic generative model, has demonstrated promise in capturing complex data distributions and reducing noise in various domains. In this context, the review provides an in-depth examination of the present status, obstacles, and future prospects in the application of biomedical image segmentation techniques. It addresses challenges associated with the uncertainty and variability in imaging data analyzing commonalities based on probabilistic methods. The paper concludes with insights into the potential impact of DDPM on advancing medical imaging techniques and fostering reliable segmentation results in clinical applications. This comprehensive review aims to provide researchers, practitioners, and healthcare professionals with a nuanced understanding of the current state, challenges, and future prospects of utilizing DDPM in the context of biomedical image segmentation. |
关键词 | biomedical image segmentation Denoising Diffusion Probabilistic Models probabilistic generative model |
DOI | 10.3390/app14020632 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:001149358200001 |
出版者 | MDPI |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/97185 |
专题 | 光电跟踪与测量技术研究室 |
通讯作者 | Ma, Caiwen |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China 2.Univ Chinese Acad Sci, Sch Optoelect, Beijing 101408, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Zengxin,Ma, Caiwen,She, Wenji,et al. Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis[J]. APPLIED SCIENCES-BASEL,2024,14(2). |
APA | Liu, Zengxin,Ma, Caiwen,She, Wenji,&Xie, Meilin.(2024).Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis.APPLIED SCIENCES-BASEL,14(2). |
MLA | Liu, Zengxin,et al."Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis".APPLIED SCIENCES-BASEL 14.2(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Biomedical Image Seg(1424KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论