OPT OpenIR  > 光谱成像技术研究室
CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning
Guo, Yi1,2,3; Gao, Yuanhang4; Hu, Bingliang1,3; Qian, Xueming2; Liang, Dong4
作者部门光谱成像技术研究室
2024-01
发表期刊Sensors
ISSN14248220
卷号24期号:1
产权排序1
摘要

Removing noise from acquired images is a crucial step in various image processing and computer vision tasks. However, the existing methods primarily focus on removing specific noise and ignore the ability to work across modalities, resulting in limited generalization performance. Inspired by the iterative procedure of image processing used by professionals, we propose a pixel-wise crossmodal image-denoising method based on deep reinforcement learning to effectively handle noise across modalities. We proposed a similarity reward to help teach an optimal action sequence to model the step-wise nature of the human processing process explicitly. In addition, We designed an action set capable of handling multiple types of noise to construct the action space, thereby achieving successful crossmodal denoising. Extensive experiments against state-of-the-art methods on publicly available RGB, infrared, and terahertz datasets demonstrate the superiority of our method in crossmodal image denoising. © 2023 by the authors.

关键词deep reinforcement learning pixel-wise image processing crossmodal image denoising infrared image denoising terahertz image denoising
DOI10.3390/s24010042
收录类别SCI ; EI
语种英语
WOS记录号WOS:001140597600001
出版者Multidisciplinary Digital Publishing Institute (MDPI)
EI入藏号20240215372894
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/97126
专题光谱成像技术研究室
通讯作者Liang, Dong
作者单位1.Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; 710119, China;
2.School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an; 710049, China;
3.University of Chinese Academy of Sciences, Beijing; 100049, China;
4.College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing; 211106, China
推荐引用方式
GB/T 7714
Guo, Yi,Gao, Yuanhang,Hu, Bingliang,et al. CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning[J]. Sensors,2024,24(1).
APA Guo, Yi,Gao, Yuanhang,Hu, Bingliang,Qian, Xueming,&Liang, Dong.(2024).CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning.Sensors,24(1).
MLA Guo, Yi,et al."CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning".Sensors 24.1(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CMID Crossmodal Imag(1987KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Yi]的文章
[Gao, Yuanhang]的文章
[Hu, Bingliang]的文章
百度学术
百度学术中相似的文章
[Guo, Yi]的文章
[Gao, Yuanhang]的文章
[Hu, Bingliang]的文章
必应学术
必应学术中相似的文章
[Guo, Yi]的文章
[Gao, Yuanhang]的文章
[Hu, Bingliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。