CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning | |
Guo, Yi1,2,3; Gao, Yuanhang4; Hu, Bingliang1,3![]() | |
作者部门 | 光谱成像技术研究室 |
2024-01 | |
发表期刊 | Sensors
![]() |
ISSN | 14248220 |
卷号 | 24期号:1 |
产权排序 | 1 |
摘要 | Removing noise from acquired images is a crucial step in various image processing and computer vision tasks. However, the existing methods primarily focus on removing specific noise and ignore the ability to work across modalities, resulting in limited generalization performance. Inspired by the iterative procedure of image processing used by professionals, we propose a pixel-wise crossmodal image-denoising method based on deep reinforcement learning to effectively handle noise across modalities. We proposed a similarity reward to help teach an optimal action sequence to model the step-wise nature of the human processing process explicitly. In addition, We designed an action set capable of handling multiple types of noise to construct the action space, thereby achieving successful crossmodal denoising. Extensive experiments against state-of-the-art methods on publicly available RGB, infrared, and terahertz datasets demonstrate the superiority of our method in crossmodal image denoising. © 2023 by the authors. |
关键词 | deep reinforcement learning pixel-wise image processing crossmodal image denoising infrared image denoising terahertz image denoising |
DOI | 10.3390/s24010042 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:001140597600001 |
出版者 | Multidisciplinary Digital Publishing Institute (MDPI) |
EI入藏号 | 20240215372894 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/97126 |
专题 | 光谱成像技术研究室 |
通讯作者 | Liang, Dong |
作者单位 | 1.Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; 710119, China; 2.School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an; 710049, China; 3.University of Chinese Academy of Sciences, Beijing; 100049, China; 4.College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing; 211106, China |
推荐引用方式 GB/T 7714 | Guo, Yi,Gao, Yuanhang,Hu, Bingliang,et al. CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning[J]. Sensors,2024,24(1). |
APA | Guo, Yi,Gao, Yuanhang,Hu, Bingliang,Qian, Xueming,&Liang, Dong.(2024).CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning.Sensors,24(1). |
MLA | Guo, Yi,et al."CMID: Crossmodal Image Denoising via Pixel-Wise Deep Reinforcement Learning".Sensors 24.1(2024). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
CMID Crossmodal Imag(1987KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论