Multiple Source Domain Adaptation for Multiple Object Tracking in Satellite Video | |
Zheng, Xiangtao1![]() ![]() | |
作者部门 | 光谱成像技术研究室 |
2023 | |
发表期刊 | IEEE Transactions on Geoscience and Remote Sensing
![]() |
ISSN | 01962892;15580644 |
卷号 | 61页码:1-11 |
产权排序 | 2 |
摘要 | Satellite videos capture the dynamic changes in a large observed sense, which provides an opportunity to track the object trajectories. However, existing multiple object tracking (MOT) methods require massive video annotations, which is time-consuming and fallible. To alleviate this problem, this article proposes a cross-domain multiple object tracker (CDTrack) to learn knowledge from multiple source domains. First, a cross-domain object detector with multilevel domain alignment is constructed to learn domain-invariant knowledge between remote sensing images and satellite videos. Second, the proposed method adopts a bidirectional teacher-student framework to fuse multiple source domains. Two teacher-student models learn different domain knowledge and teach mutually each other. With mutual learning, the proposed method alleviates the discrepancies between different domains. Finally, a simple weakly supervised Re-IDentification (Re-ID) model is proposed for long-term association. Experimental results on the satellite video datasets demonstrate that the proposed method can achieve great performance without satellite video annotations. The code is available at https://github.com/XiangtaoZheng/CDTrack. © 1980-2012 IEEE. |
关键词 | Cross-domain recognition deep neural networks multiple object tracking (MOT) object detection satellite video |
DOI | 10.1109/TGRS.2023.3336665 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234915181718 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/97054 |
专题 | 光谱成像技术研究室 |
通讯作者 | Zheng, Xiangtao |
作者单位 | 1.Fuzhou University, College of Physics and Information Engineering, Fuzhou; 350108, China; 2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Key Laboratory of Spectral Imaging Technology Cas, Xi'an; 710119, China; 3.University of Chinese Academy of Sciences, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Zheng, Xiangtao,Cui, Haowen,Lu, Xiaoqiang. Multiple Source Domain Adaptation for Multiple Object Tracking in Satellite Video[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-11. |
APA | Zheng, Xiangtao,Cui, Haowen,&Lu, Xiaoqiang.(2023).Multiple Source Domain Adaptation for Multiple Object Tracking in Satellite Video.IEEE Transactions on Geoscience and Remote Sensing,61,1-11. |
MLA | Zheng, Xiangtao,et al."Multiple Source Domain Adaptation for Multiple Object Tracking in Satellite Video".IEEE Transactions on Geoscience and Remote Sensing 61(2023):1-11. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Multiple Source Doma(4608KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论