OPT OpenIR  > 光谱成像技术研究室
Multi-Prior Graph Autoencoder with Ranking-Based Band Selection for Hyperspectral Anomaly Detection
Wang, Nan1,2; Shi, Yuetian1,2; Li, Haiwei1,3; Zhang, Geng1,3; Li, Siyuan1,3; Liu, Xuebin1,3
作者部门光谱成像技术研究室
2023-09
发表期刊REMOTE SENSING
ISSN2072-4292
卷号15期号:18
产权排序1
摘要

Hyperspectral anomaly detection (HAD) is an important technique used to identify objects with spectral irregularity that can contribute to object-based image analysis. Latterly, significant attention has been given to HAD methods based on Autoencoders (AE). Nevertheless, due to a lack of prior information, transferring of modeling capacity, and the curse of dimensionality, AE-based detectors still have limited performance. To address the drawbacks, we propose a Multi-Prior Graph Autoencoder (MPGAE) with ranking-based band selection for HAD. There are three main components: the ranking-based band selection component, the adaptive salient weight component, and the graph autoencoder. First, the ranking-based band selection component removes redundant spectral channels by ranking the bands by employing piecewise-smooth first. Then, the adaptive salient weight component adjusts the reconstruction ability of the AE based on the salient prior, by calculating spectral-spatial features of the local context and the multivariate normal distribution of backgrounds. Finally, to preserve the geometric structure in the latent space, the graph autoencoder detects anomalies by obtaining reconstruction errors with a superpixel segmentation-based graph regularization. In particular, the loss function utilizes l2,1-norm and adaptive salient weight to enhance the capacity of modeling anomaly patterns. Experimental results demonstrate that the proposed MPGAE effectively outperforms other state-of-the-art HAD detectors.

关键词hyperspectral anomaly detection deep learning band selection autoencoder
DOI10.3390/rs15184430
收录类别SCI
语种英语
WOS记录号WOS:001074418700001
出版者MDPI
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/96827
专题光谱成像技术研究室
通讯作者Zhang, Geng
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710100, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Shaanxi Key Lab Opt Remote Sensing & Intelligent I, Xian 710100, Peoples R China
推荐引用方式
GB/T 7714
Wang, Nan,Shi, Yuetian,Li, Haiwei,et al. Multi-Prior Graph Autoencoder with Ranking-Based Band Selection for Hyperspectral Anomaly Detection[J]. REMOTE SENSING,2023,15(18).
APA Wang, Nan,Shi, Yuetian,Li, Haiwei,Zhang, Geng,Li, Siyuan,&Liu, Xuebin.(2023).Multi-Prior Graph Autoencoder with Ranking-Based Band Selection for Hyperspectral Anomaly Detection.REMOTE SENSING,15(18).
MLA Wang, Nan,et al."Multi-Prior Graph Autoencoder with Ranking-Based Band Selection for Hyperspectral Anomaly Detection".REMOTE SENSING 15.18(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Multi-Prior Graph Au(4511KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Nan]的文章
[Shi, Yuetian]的文章
[Li, Haiwei]的文章
百度学术
百度学术中相似的文章
[Wang, Nan]的文章
[Shi, Yuetian]的文章
[Li, Haiwei]的文章
必应学术
必应学术中相似的文章
[Wang, Nan]的文章
[Shi, Yuetian]的文章
[Li, Haiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。