OPT OpenIR  > 光谱成像技术研究室
Exploring Contrastive Representation for Weakly-Supervised Glacial Lake Extraction
Zhao, Hang1,2; Wang, Shuang1,2; Liu, Xuebin1,2; Chen, Fang2,3,4,5
作者部门光谱成像技术研究室
2023-03
发表期刊REMOTE SENSING
ISSN2072-4292
卷号15期号:5
产权排序1
摘要

Against the background of the ongoing atmospheric warming, the glacial lakes that are nourished and expanded in High Mountain Asia pose growing risks of glacial lake outburst floods (GLOFs) hazards and increasing threats to the downstream areas. Effectively extracting the area and consistently monitoring the dynamics of these lakes are of great significance in predicting and preventing GLOF events. To automatically extract the lake areas, many deep learning (DL) methods capable of capturing the multi-level features of lakes have been proposed in segmentation and classification tasks. However, the portability of these supervised DL methods need to be improved in order to be directly applied to different data sources, as they require laborious effort to collect the labeled lake masks. In this work, we proposed a simple glacial lake extraction model (SimGL) via weakly-supervised contrastive learning to extend and improve the extraction performances in cases that lack the labeled lake masks. In SimGL, a Siamese network was employed to learn similar objects by maximizing the similarity between the input image and its augmentations. Then, a simple Normalized Difference Water Index (NDWI) map was provided as the location cue instead of the labeled lake masks to constrain the model to capture the representations related to the glacial lakes and the segmentations to coincide with the true lake areas. Finally, the experimental results of the glacial lake extraction on the 1540 Landsat-8 image patches showed that our approach, SimGL, offers a competitive effort with some supervised methods (such as Random Forest) and outperforms other unsupervised image segmentation methods in cases that lack true image labels.

关键词glacial lake extraction Landsat-8 OLI weakly-supervised segmentation contrastive learning
DOI10.3390/rs15051456
收录类别SCI
语种英语
WOS记录号WOS:000947612100001
出版者MDPI
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/96391
专题光谱成像技术研究室
通讯作者Wang, Shuang
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
4.Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China
5.Chinese Acad Sci, Aerosp Informat Res Inst, Hainan Key Lab Earth Observat, Sanya 572029, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Hang,Wang, Shuang,Liu, Xuebin,et al. Exploring Contrastive Representation for Weakly-Supervised Glacial Lake Extraction[J]. REMOTE SENSING,2023,15(5).
APA Zhao, Hang,Wang, Shuang,Liu, Xuebin,&Chen, Fang.(2023).Exploring Contrastive Representation for Weakly-Supervised Glacial Lake Extraction.REMOTE SENSING,15(5).
MLA Zhao, Hang,et al."Exploring Contrastive Representation for Weakly-Supervised Glacial Lake Extraction".REMOTE SENSING 15.5(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Exploring Contrastiv(4541KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Hang]的文章
[Wang, Shuang]的文章
[Liu, Xuebin]的文章
百度学术
百度学术中相似的文章
[Zhao, Hang]的文章
[Wang, Shuang]的文章
[Liu, Xuebin]的文章
必应学术
必应学术中相似的文章
[Zhao, Hang]的文章
[Wang, Shuang]的文章
[Liu, Xuebin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。