Remote Sensing Cross-Modal Retrieval by Deep Image-Voice Hashing | |
Zhang, Yichao; Zheng, Xiangtao![]() ![]() | |
作者部门 | 光谱成像技术研究室 |
2022 | |
发表期刊 | IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
![]() |
ISSN | 1939-1404;2151-1535 |
卷号 | 15 |
产权排序 | 1 |
摘要 | Remote sensing image retrieval aims at searching remote sensing images of interest among immense volumes of remote sensing data, which is an enormous challenge. Direct use of voice for human-computer interaction is more convenient and intelligent. In this article, a deep image-voice hashing (DIVH) method is proposed for remote sensing image-voice retrieval. First, the whole framework is composed of the image and the voice feature learning subnetwork. Then, the hash code learning procedure will be leveraged in remote sensing image-voice retrieval to further improve the retrieval efficiency and reduce memory footprint. Hash code learning maps the deep features of images and voices into a common Hamming space. Finally, image-voice pairwise loss is proposed, which considers the similarity preservation and balance of hash codes. The similarity preserving and the balance controlling term of the loss function improve the similarity preservation from original data space to the Hamming space and the discrimination of binary code, respectively. This unified cross-modal feature and hash code learning framework significantly reduce the semantic gap between the two modal data. Experiments demonstrate that the proposed DIVH method can achieve a superior retrieval performance than other state-of-the-art remote sensing image-voice retrieval methods. |
关键词 | Remote sensing Codes Feature extraction Image retrieval Semantics Task analysis Sensors Convolutional neural network (CNN) cross-modal retrieval deep hashing hash code |
DOI | 10.1109/JSTARS.2022.3216333 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000883157900008 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/96242 |
专题 | 光谱成像技术研究室 |
推荐引用方式 GB/T 7714 | Zhang, Yichao,Zheng, Xiangtao,Lu, Xiaoqiang. Remote Sensing Cross-Modal Retrieval by Deep Image-Voice Hashing[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2022,15. |
APA | Zhang, Yichao,Zheng, Xiangtao,&Lu, Xiaoqiang.(2022).Remote Sensing Cross-Modal Retrieval by Deep Image-Voice Hashing.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,15. |
MLA | Zhang, Yichao,et al."Remote Sensing Cross-Modal Retrieval by Deep Image-Voice Hashing".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 15(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Remote Sensing Cross(3144KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论