OPT OpenIR  > 光谱成像技术研究室
Pairwise Comparison Network for Remote Sensing Scene Classification
Zhang, Yue1,2; Zheng, Xiangtao1; Lu, Xiaoqiang1
作者部门光谱成像技术研究室
2022-05-17
出处arXiv
ISSN23318422
产权排序1
摘要Remote sensing scene classification aims to assign a specific semantic label to a remote sensing image. Recently, convolutional neural networks have greatly improved the performance of remote sensing scene classification. However, some confused images may be easily recognized as the incorrect category, which generally degrade the performance. The differences between image pairs can be used to distinguish image categories. This paper proposed a pairwise comparison network, which contains two main steps: pairwise selection and pairwise representation. The proposed network first selects similar image pairs, and then represents the image pairs with pairwise representations. The self-representation is introduced to highlight the informative parts of each image itself, while the mutual-representation is proposed to capture the subtle differences between image pairs. Comprehensive experimental results on two challenging datasets (AID, NWPU-RESISC45) demonstrate the effectiveness of the proposed network. The code are provided in https://github.com/spectralpublic/PCNet.git. Copyright © 2022, The Authors. All rights reserved.
收录类别EI
语种英语
出版者arXiv
EI入藏号2147483647
文献类型预印本
条目标识符http://ir.opt.ac.cn/handle/181661/95983
专题光谱成像技术研究室
作者单位1.The Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Shaanxi, Xi’an; 710119, China;
2.The University of Chinese Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Zhang, Yue,Zheng, Xiangtao,Lu, Xiaoqiang. Pairwise Comparison Network for Remote Sensing Scene Classification. 2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2205.08147v1.pdf(458KB)预印本 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Yue]的文章
[Zheng, Xiangtao]的文章
[Lu, Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Zhang, Yue]的文章
[Zheng, Xiangtao]的文章
[Lu, Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Zhang, Yue]的文章
[Zheng, Xiangtao]的文章
[Lu, Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。