Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion | |
Chen, Yaxiong1,2,3; Zhao, Dongjie1,2,3; Lu, Xiongbo1,2,3; Xiong, Shengwu1,2,3; Wang, Huangting4 | |
作者部门 | 光谱成像技术研究室 |
2022 | |
发表期刊 | IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
![]() |
ISSN | 1939-1404;2151-1535 |
卷号 | 15页码:2816-2825 |
产权排序 | 4 |
摘要 | Unsupervised hashingalgorithms are widely used in large-scale remote sensing images (RSIs) retrieval task. However, existing RSI retrieval algorithms fail to capture the multichannel characteristic of multispectral RSIs and the balanced property of hash codes, which lead the poor performance of RSI retrieval. To tackle these issues, we develop an unsupervised hashing algorithm, namely, variational autoencoder balanced hashing (VABH), to leverage multichannel feature fusion and multiscale context information to perform RSI retrieval task. First, multichannel feature fusion module is designed to extract RSI feature information by leveraging the multichannel properties of multispectral RSI. Second, multiscale learning module is developed to learn the multiscale context information of RSIs. Finally, a novel objective function is designed to capture the discrimination and balanced property of hash codes in the hashing learning process. Comprehensive experiments on diverse benchmark have well demonstrated the reasonableness and effectiveness of the proposed VABH algorithm. |
关键词 | Feature extraction Codes Data mining Convolution Linear programming Approximation algorithms Semantics Deep hash codes multichannel feature fusion multiscale context information unsupervised hashing learning |
DOI | 10.1109/JSTARS.2022.3162251 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000784198000007 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20221812063181 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/95851 |
专题 | 光谱成像技术研究室 |
通讯作者 | Xiong, Shengwu |
作者单位 | 1.Wuhan Univ Technol, Sch Comp & Artificial Intelligence, Wuhan 430070, Peoples R China 2.Wuhan Univ Technol, Sanya Sci & Educ Innovat Pk, Sanya 572000, Peoples R China 3.Wuhan Univ Technol, Chongqing Res Inst, Chongqing 401122, Peoples R China 4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Yaxiong,Zhao, Dongjie,Lu, Xiongbo,et al. Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2022,15:2816-2825. |
APA | Chen, Yaxiong,Zhao, Dongjie,Lu, Xiongbo,Xiong, Shengwu,&Wang, Huangting.(2022).Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,15,2816-2825. |
MLA | Chen, Yaxiong,et al."Unsupervised Balanced Hash Codes Learning With Multichannel Feature Fusion".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 15(2022):2816-2825. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Unsupervised Balance(3665KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论