OPT OpenIR  > 光谱成像技术研究室
External Attention Based TransUNet and Label Expansion Strategy for Crack Detection
Fang, Jie1,2; Yang, Chen3; Shi, Yuetian4,5; Wang, Nan4,5; Zhao, Yang6
作者部门光谱成像技术研究室
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050;1558-0016
产权排序4
摘要

Crack detection is an indispensable premise of road maintenance, which can provide early warning information for many road damages and save repair costs to a large extent. Because of the security and convenience, many image processing technique (IPT) based crack detection methods have been proposed, but their performances often cannot meet the requirements of practical applications because of the complex texture structure and seriously imbalanced categories. To address the aforementioned problem, we present an external attention based TransUNet for crack detection. Specifically, we tackle the TransUNet as the backbone of our detection framework, which can propagate the detailed texture information from shallow layers to corresponding deep layers through skip connections. Besides, the Transformer Block equipped in the second last convolution layer of the encoding component can explicitly model the long-range dependency of different regions in an image, which improves the structural representation ability of the framework and hence alleviates the interference from shadow, noise, and other negative factors. In addition, the External Attention Block equipped in the last convolution layer of the encoding component can effectively exploit the dependency of crack regions among different images, and further enhance the robustness of the framework. Finally, combined with the Focal Loss, the proposed label expansion strategy can further alleviate the category imbalance problem through transforming semantic categories of non-crack pixels distributed in the neighbors of corresponding crack pixels.

关键词Feature extraction Transformers Roads Mathematical models Deep learning Convolution Semantics Crack detection TransUNet external attention label expansion
DOI10.1109/TITS.2022.3154407
收录类别SCI ; EI
语种英语
WOS记录号WOS:000770580700001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20221211832362
引用统计
被引频次:30[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/95782
专题光谱成像技术研究室
通讯作者Fang, Jie
作者单位1.Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Shaanxi, Peoples R China
2.Corp Shaanxi Wukong Clouds Informat & Technol, Xian 710000, Shaanxi, Peoples R China
3.Minist Sci & Technol, Pudong Dev Bank, Xian 710065, Shaanxi, Peoples R China
4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Shaanxi, Peoples R China
5.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
6.Changan Univ, Coll Transportat Engn, Xian 710064, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Fang, Jie,Yang, Chen,Shi, Yuetian,et al. External Attention Based TransUNet and Label Expansion Strategy for Crack Detection[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS.
APA Fang, Jie,Yang, Chen,Shi, Yuetian,Wang, Nan,&Zhao, Yang.
MLA Fang, Jie,et al."External Attention Based TransUNet and Label Expansion Strategy for Crack Detection".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
External Attention B(3335KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fang, Jie]的文章
[Yang, Chen]的文章
[Shi, Yuetian]的文章
百度学术
百度学术中相似的文章
[Fang, Jie]的文章
[Yang, Chen]的文章
[Shi, Yuetian]的文章
必应学术
必应学术中相似的文章
[Fang, Jie]的文章
[Yang, Chen]的文章
[Shi, Yuetian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。