Genetic-algorithm-based deep neural networks for highly efficient photonic device design | |
Ren, Yangming1,2; Zhang, Linxuan1,2; Wang, Weiqiang1,2; Wang, Xinyu1,2; Lei, Yufang1,2; Xue, Yulong1,2; Sun, Xiaochen1,2; Zhang, Wenfu1,2 | |
作者部门 | 瞬态光学研究室 |
2021-06-01 | |
发表期刊 | Photonics Research
![]() |
ISSN | 23279125 |
卷号 | 9期号:6页码:B247-B252 |
产权排序 | 1 |
摘要 | While deep learning has demonstrated tremendous potential for photonic device design, it often demands a large amount of labeled data to train these deep neural network models. Preparing these data requires high-resolution numerical simulations or experimental measurements and cost significant, if not prohibitive, time and resources. In this work, we present a highly efficient inverse design method that combines deep neural networks with a genetic algorithm to optimize the geometry of photonic devices in the polar coordinate system. The method requires significantly less training data compared with previous inverse design methods. We implement this method to design several ultra-compact silicon photonics devices with challenging properties including power splitters with uncommon splitting ratios, a TE mode converter, and a broadband power splitter. These devices are free of the features beyond the capability of photolithography and generally in compliance with silicon photonics fabrication design rules. © 2021 Chinese Laser Press |
DOI | 10.1364/PRJ.416294 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000658338800001 |
出版者 | The Optical Society |
EI入藏号 | 20212310447556 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94867 |
专题 | 瞬态光学研究室 |
通讯作者 | Sun, Xiaochen; Zhang, Wenfu |
作者单位 | 1.State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Ren, Yangming,Zhang, Linxuan,Wang, Weiqiang,et al. Genetic-algorithm-based deep neural networks for highly efficient photonic device design[J]. Photonics Research,2021,9(6):B247-B252. |
APA | Ren, Yangming.,Zhang, Linxuan.,Wang, Weiqiang.,Wang, Xinyu.,Lei, Yufang.,...&Zhang, Wenfu.(2021).Genetic-algorithm-based deep neural networks for highly efficient photonic device design.Photonics Research,9(6),B247-B252. |
MLA | Ren, Yangming,et al."Genetic-algorithm-based deep neural networks for highly efficient photonic device design".Photonics Research 9.6(2021):B247-B252. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Genetic-algorithm-ba(995KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论