Adaptive multiscale feature for object detection | |
Yu, Xiaoyong1,2; Wu, Siyuan1; Lu, Xiaoqiang1![]() | |
作者部门 | 光谱成像技术研究室 |
2021-08-18 | |
发表期刊 | Neurocomputing
![]() |
ISSN | 09252312;18728286 |
卷号 | 449页码:146-158 |
产权排序 | 2 |
摘要 | In object detection, multiscale features are necessary to deal with objects with different size. Using Feature Pyramid Network (FPN) as the backbone network is a very popular paradigm in existing object detectors, we call this paradigm FPN+. However, feature fusion of FPN is insufficient to express object of similar size but different appearance due to the unidirectional feature fusion. We motivate and present Adaptive Multiscale Feature (AMF), a new multiscale feature fusion method with bidirectional feature fusion, using to solve the one-direction fusion of FPN. AMF module fuses multiscale features from two aspects: (1) shattering features by the way of CLSM; (2) fusing features by the way of channel-wise attention. The proposed AMF improves the expression ability of multiscale features of the backbone network, and effectively improves the performance of the object detector. The proposed feature fusion method can be added to all object detector, such as the one-stage detector, the two-stage detector, anchor-based detector and anchor-free based detector. Experimental results on the COCO 2014 dataset show that the proposed AMF module performs the popular FPN based detector. Whether anchored-free based detectors or anchored based detectors, performance of detector can be improved through AMF. And the resulting best model can achieve a very competitive mAP on COCO 2014 dataset. © 2021 Elsevier B.V. |
关键词 | Object detection Classification network Backbone network Multiscale feature Feature fusion Adaptation Anchor Anchor-free |
DOI | 10.1016/j.neucom.2021.04.002 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000652818400013 |
出版者 | Elsevier B.V. |
EI入藏号 | 20211710256596 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94711 |
专题 | 光谱成像技术研究室 |
通讯作者 | Wu, Siyuan |
作者单位 | 1.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; Shaanxi; 710119, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China; 3.Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi'an; Shaanxi; 710119, China |
推荐引用方式 GB/T 7714 | Yu, Xiaoyong,Wu, Siyuan,Lu, Xiaoqiang,et al. Adaptive multiscale feature for object detection[J]. Neurocomputing,2021,449:146-158. |
APA | Yu, Xiaoyong,Wu, Siyuan,Lu, Xiaoqiang,&Gao, Guilong.(2021).Adaptive multiscale feature for object detection.Neurocomputing,449,146-158. |
MLA | Yu, Xiaoyong,et al."Adaptive multiscale feature for object detection".Neurocomputing 449(2021):146-158. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Adaptive multiscale (2297KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论