Sparse constrained low tensor rank representation framework for hyperspectral unmixing | |
Dong, Le1,2; Yuan, Yuan3![]() | |
作者部门 | 光谱成像技术研究室 |
2021-04-02 | |
发表期刊 | Remote Sensing
![]() |
ISSN | 20724292 |
卷号 | 13期号:8 |
产权排序 | 1 |
摘要 | Recently, non-negative tensor factorization (NTF) as a very powerful tool has attracted the attention of researchers. It is used in the unmixing of hyperspectral images (HSI) due to its excellent expression ability without any information loss when describing data. However, most of the existing unmixing methods based on NTF fail to fully explore the unique properties of data, for example, low rank, that exists in both the spectral and spatial domains. To explore this low-rank structure, in this paper we learn the different low-rank representations of HSI in the spectral, spatial and non-local similarity modes. Firstly, HSI is divided into many patches, and these patches are clustered multiple groups according to the similarity. Each similarity group can constitute a 4-D tensor, including two spatial modes, a spectral mode and a non-local similarity mode, which has strong low-rank properties. Secondly, a low-rank regularization with logarithmic function is designed and embedded in the NTF framework, which simulates the spatial, spectral and non-local similarity modes of these 4-D tensors. In addition, the sparsity of the abundance tensor is also integrated into the unmixing framework to improve the unmixing performance through the L2,1 norm. Experiments on three real data sets illustrate the stability and effectiveness of our algorithm compared with five state-of-the-art methods. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
关键词 | hyperspectral unmixing low tensor rank non-negative tensor factorization sparse constraint |
DOI | 10.3390/rs13081473 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000644676100001 |
出版者 | MDPI AG |
EI入藏号 | 20211710243143 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94694 |
专题 | 光谱成像技术研究室 |
通讯作者 | Yuan, Yuan |
作者单位 | 1.Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; 710119, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China; 3.School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an; 710072, China |
推荐引用方式 GB/T 7714 | Dong, Le,Yuan, Yuan. Sparse constrained low tensor rank representation framework for hyperspectral unmixing[J]. Remote Sensing,2021,13(8). |
APA | Dong, Le,&Yuan, Yuan.(2021).Sparse constrained low tensor rank representation framework for hyperspectral unmixing.Remote Sensing,13(8). |
MLA | Dong, Le,et al."Sparse constrained low tensor rank representation framework for hyperspectral unmixing".Remote Sensing 13.8(2021). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Sparse constrained l(6006KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Dong, Le]的文章 |
[Yuan, Yuan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Dong, Le]的文章 |
[Yuan, Yuan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Dong, Le]的文章 |
[Yuan, Yuan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论