A Novel Negative-Transfer-Resistant Fuzzy Clustering Model With a Shared Cross-Domain Transfer Latent Space and its Application to Brain CT Image Segmentation | |
Jiang, Yizhang1,2; Gu, Xiaoqing3; Wu, Dongrui4; Hang, Wenlong5,6; Xue, Jing7; Qiu, Shi8![]() | |
作者部门 | 光谱成像技术研究室 |
2021 | |
发表期刊 | IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
![]() |
ISSN | 1545-5963;1557-9964 |
卷号 | 18期号:1页码:40-52 |
产权排序 | 8 |
摘要 | Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or outliers. However, a sufficient amount of medical images with representative manual labels are often not available, because medical images are frequently acquired with different scanners (or different scan protocols) or polluted by various noises. Transfer learning improves learning in the target domain by leveraging knowledge from related domains. Given some target data, the performance of transfer learning is determined by the degree of relevance between the source and target domains. To achieve positive transfer and avoid negative transfer, a negative-transfer-resistant mechanism is proposed by computing the weight of transferred knowledge. Extracting a negative-transfer-resistant fuzzy clustering model with a shared cross-domain transfer latent space (called NTR-FC-SCT) is proposed by integrating negative-transfer-resistant and maximum mean discrepancy (MMD) into the framework of fuzzy c-means clustering. Experimental results show that the proposed NTR-FC-SCT model outperformed several traditional non-transfer and related transfer clustering algorithms. |
关键词 | Medical image segmentation fuzzy clustering transfer learning negative transfer |
DOI | 10.1109/TCBB.2019.2963873 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000615042600005 |
出版者 | IEEE COMPUTER SOC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/94521 |
专题 | 光谱成像技术研究室 |
通讯作者 | Gu, Xiaoqing |
作者单位 | 1.Jiangnan Univ, Jiangsu Key Lab Media Design & Software Technol, Wuxi 214122, Jiangsu, Peoples R China 2.Jiangnan Univ, Sch Digital Media, Wuxi 214122, Jiangsu, Peoples R China 3.Changzhou Univ, Sch Informat Sci & Engn, Changzhou 213164, Jiangsu, Peoples R China 4. Huazhong Univ Sci & Technol, Sch Automat, Key Lab, Minist Educ Image Proc & Intelligent Control, Wuhan 430074, Hubei, Peoples R China 5.Nanjing Tech Univ, Sch Comp Sci & Technol, Nanjing 211816, Jiangsu, Peoples R China 6.Nanjing Med Univ, Sch Comp Sci & Technol, Wuxi 214023, Jiangsu, Peoples R China 7.Nanjing Med Univ, Dept Nephrol, Affiliated Wuxi Peoples Hosp, Wuxi 214023, Jiangsu, Peoples R China 8.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Shaanxi, Peoples R China 9.Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Ultimo, NSW 2007, Australia |
推荐引用方式 GB/T 7714 | Jiang, Yizhang,Gu, Xiaoqing,Wu, Dongrui,et al. A Novel Negative-Transfer-Resistant Fuzzy Clustering Model With a Shared Cross-Domain Transfer Latent Space and its Application to Brain CT Image Segmentation[J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,2021,18(1):40-52. |
APA | Jiang, Yizhang.,Gu, Xiaoqing.,Wu, Dongrui.,Hang, Wenlong.,Xue, Jing.,...&Lin, Chin-Teng.(2021).A Novel Negative-Transfer-Resistant Fuzzy Clustering Model With a Shared Cross-Domain Transfer Latent Space and its Application to Brain CT Image Segmentation.IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,18(1),40-52. |
MLA | Jiang, Yizhang,et al."A Novel Negative-Transfer-Resistant Fuzzy Clustering Model With a Shared Cross-Domain Transfer Latent Space and its Application to Brain CT Image Segmentation".IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 18.1(2021):40-52. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A Novel Negative-Tra(2388KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论