OPT OpenIR  > 光谱成像技术研究室
Supervised Dimensionality Reduction Methods via Recursive Regression
Liu, Yun1; Zhang, Rui2; Nie, Feiping3,4; Li, Xuelong3,4; Ding, Chris1
作者部门光谱成像技术研究室
2020-09
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X;2162-2388
卷号31期号:9页码:3269-3279
产权排序2
摘要

In this article, the recursive problems of both orthogonal linear discriminant analysis (OLDA) and orthogonal least squares regression (OLSR) are investigated. Different from other works, the associated recursive problems are addressed via a novel recursive regression method, which achieves the dimensionality reduction in the orthogonal complement space heuristically. As for the OLDA, an efficient method is developed to obtain the associated optimal subspace, which is closely related to the orthonormal basis of the optimal solution to the ridge regression. As for the OLSR, the scalable subspace is introduced to build up an original OLSR with optimal scaling (OS). Through further relaxing the proposed problem into a convex parameterized orthogonal quadratic problem, an effective approach is derived, such that not only the optimal subspace can be achieved but also the OS could be obtained automatically. Accordingly, two supervised dimensionality reduction methods are proposed via obtaining the heuristic solutions to the recursive problems of the OLDA and the OLSR.

关键词Dimensionality reduction Linear discriminant analysis Eigenvalues and eigenfunctions Learning systems Computer science Optical imaging Optics Optimal scaling (OS) orthogonal least squares regression (OLSR) orthogonal linear discriminant analysis (OLDA) recursive regression supervised dimensionality reduction
DOI10.1109/TNNLS.2019.2940088
收录类别SCI ; EI
语种英语
WOS记录号WOS:000566342500011
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
EI入藏号20203809203003
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93696
专题光谱成像技术研究室
通讯作者Nie, Feiping
作者单位1.Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
2.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
3.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
4.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yun,Zhang, Rui,Nie, Feiping,et al. Supervised Dimensionality Reduction Methods via Recursive Regression[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2020,31(9):3269-3279.
APA Liu, Yun,Zhang, Rui,Nie, Feiping,Li, Xuelong,&Ding, Chris.(2020).Supervised Dimensionality Reduction Methods via Recursive Regression.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,31(9),3269-3279.
MLA Liu, Yun,et al."Supervised Dimensionality Reduction Methods via Recursive Regression".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 31.9(2020):3269-3279.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Supervised Dimension(1723KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yun]的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
百度学术
百度学术中相似的文章
[Liu, Yun]的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
必应学术
必应学术中相似的文章
[Liu, Yun]的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。