OPT OpenIR  > 飞行器光学成像与测量技术研究室
End-to-end learning interpolation for object tracking in low frame-rate video
Liu, Liqiang1,2; Cao, Jianzhong1
作者部门飞行器光学成像与测量技术研究室
2020-05-11
发表期刊IET Image Processing
ISSN17519659
卷号14期号:6页码:1066-1072
产权排序1
摘要

In many scenarios, where videos are transmitted through bandwidth-limited channels for subsequent semantic analytics, the choice of frame rates has to balance between bandwidth constraints and analytics performance. Faced with this practical challenge, this study focuses on enhancing object tracking at low frame rates and proposes a learning Interpolation for tracking framework. This framework embeds an implicit video frame interpolation sub-network, which is concatenated and jointly trained with another object tracking sub-network. Once a low frame-rate video is an input, it is first mapped into a high frame-rate latent video, based on which the tracker is learned. Novel strategies and loss functions are derived to ensure the effective end-to-end optimisation of the authors' network. On several challenging benchmarks and settings, their method achieves a highly competitive tradeoff between frame rate and tracking accuracy. As is known, the implications of interpolation on semantic video analytics and tracking remain unexplored, and the authors expect their method to find many applications in mobile embedded vision, Internet of Things and edge computing. © The Institution of Engineering and Technology 2020

关键词video signal processing learning (artificial intelligence) object tracking interpolation mobile computing low frame rates implicit video frame interpolation sub-network object tracking low frame-rate video high frame-rate latent video effective end-to-end optimisation frame rate tracking accuracy semantic video analytics end-to-end learning interpolation subsequent semantic analytics bandwidth constraints analytics performance
DOI10.1049/iet-ipr.2019.0944
收录类别SCI ; EI
语种英语
WOS记录号WOS:000530456000008
出版者Institution of Engineering and Technology
EI入藏号20201908616093
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93422
专题飞行器光学成像与测量技术研究室
作者单位1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, No. 17, Xinxi Road, Xi'an, China;
2.University of Chinese Academy of Sciences, No.19, Yuquan Road, Beijing, China
推荐引用方式
GB/T 7714
Liu, Liqiang,Cao, Jianzhong. End-to-end learning interpolation for object tracking in low frame-rate video[J]. IET Image Processing,2020,14(6):1066-1072.
APA Liu, Liqiang,&Cao, Jianzhong.(2020).End-to-end learning interpolation for object tracking in low frame-rate video.IET Image Processing,14(6),1066-1072.
MLA Liu, Liqiang,et al."End-to-end learning interpolation for object tracking in low frame-rate video".IET Image Processing 14.6(2020):1066-1072.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
End-to-end learning (1723KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Liqiang]的文章
[Cao, Jianzhong]的文章
百度学术
百度学术中相似的文章
[Liu, Liqiang]的文章
[Cao, Jianzhong]的文章
必应学术
必应学术中相似的文章
[Liu, Liqiang]的文章
[Cao, Jianzhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。