OPT OpenIR  > 光谱成像技术研究室
Subspace Clustering Constrained Sparse NMF for Hyperspectral Unmixing
Lu, Xiaoqiang1; Dong, Le1; Yuan, Yuan2
作者部门光谱成像技术研究室
2020-05
发表期刊IEEE Transactions on Geoscience and Remote Sensing
ISSN01962892;15580644
卷号58期号:5页码:3007-3019
产权排序1
摘要

As one of the most important information of hyperspectral images (HSI), spatial information is usually simulated with the similarity among pixels to enhance the unmixing performance of nonnegative matrix factorization (NMF). Nevertheless, the similarity is generally calculated based on the Euclidean distance between pairwise pixels, which is sensitive to noise and fails in capturing subspace information of hyperspectral data. In addition, it is independent of the NMF framework. In this article, we propose a novel unmixing method called subspace clustering constrained sparse NMF (SC-NMF) for hyperspectral unmixing to more accurately extract endmembers and correspond abundances. First, the nonnegative subspace clustering is embedded into the NMF framework to learn a similar graph, which takes full advantage of the characteristics of the reconstructed data itself to extract the spatial correlation of pixels for unmixing. It is noteworthy that the similar graph and NMF will be simultaneously updated. Second, to mitigate the influence of noise in HSI, only the k largest values are retained in each self-expression vector. Finally, we use the idea of subspace clustering to extract endmembers by linearly combining of all pixels in spectral subspace, aiming at giving a reasonable physical significance to the endmembers. We evaluate the proposed SC-NMF on both synthetic and real hyperspectral data, and experimental results demonstrate that the proposed method is effective and superior by comparing with the state-of-The-Art methods. © 1980-2012 IEEE.

关键词Hyperspectral unmixing self-expression spatial structure subspace clustering
DOI10.1109/TGRS.2019.2946751
收录类别SCI ; EI
语种英语
WOS记录号WOS:000529868700002
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20201908611383
引用统计
被引频次:44[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93421
专题光谱成像技术研究室
作者单位1.Key Laboratory of Spectral Imaging Technology CAS, Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China;
2.School of Computer Science, Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Dong, Le,Yuan, Yuan. Subspace Clustering Constrained Sparse NMF for Hyperspectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(5):3007-3019.
APA Lu, Xiaoqiang,Dong, Le,&Yuan, Yuan.(2020).Subspace Clustering Constrained Sparse NMF for Hyperspectral Unmixing.IEEE Transactions on Geoscience and Remote Sensing,58(5),3007-3019.
MLA Lu, Xiaoqiang,et al."Subspace Clustering Constrained Sparse NMF for Hyperspectral Unmixing".IEEE Transactions on Geoscience and Remote Sensing 58.5(2020):3007-3019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Subspace Clustering (2036KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaoqiang]的文章
[Dong, Le]的文章
[Yuan, Yuan]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaoqiang]的文章
[Dong, Le]的文章
[Yuan, Yuan]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaoqiang]的文章
[Dong, Le]的文章
[Yuan, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。