OPT OpenIR  > 光谱成像技术研究室
Multisource Compensation Network for Remote Sensing Cross-Domain Scene Classification
Lu, Xiaoqiang1; Gong, Tengfei1,2; Zheng, Xiangtao1
作者部门光谱成像技术研究室
2020-04-01
发表期刊IEEE Transactions on Geoscience and Remote Sensing
ISSN01962892;15580644
卷号58期号:4页码:2504-2515
产权排序1
摘要

Cross-domain scene classification refers to the scene classification task in which the training set (termed source domain) and the test set (termed target domain) come from different distributions. Various domain adaptation methods have been developed to reduce the distribution discrepancy between different domains. However, current domain adaptation methods assume that the source domain and target domain share the same categories. In reality, it is hard to find a source domain that can completely cover all the categories of target domain. In this article, we propose to use multiple complementary source domains to form the categories of target domain. A multisource compensation network (MSCN) is proposed to tackle these challenges: distribution discrepancy and category incompleteness. First, a pretrained convolutional neural network (CNN) is exploited to learn the feature representation for each domain. Second, a cross-domain alignment module is developed to reduce the domain shift between source and target domains. Domain shift is reduced by mapping the two domain features into a common feature space. Finally, a classifier complement module is proposed to align categories in multiple sources and learn a target classifier. Two cross-domain classification data sets are constructed using four heterogeneous remote sensing scene classification data sets. Extensive experiments are conducted on these datasets to validate the effectiveness of the proposed method. The proposed method can achieve 81.23% and 81.97% average accuracies on two-source-complementary data set and three-source-complementary data set, respectively. © 2019 IEEE.

关键词Cross-domain scene classification domain adaptation multisource compensation remote sensing scene classification
DOI10.1109/TGRS.2019.2951779
收录类别SCI ; EI
语种英语
WOS记录号WOS:000538748900019
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20201508402756
引用统计
被引频次:90[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93365
专题光谱成像技术研究室
通讯作者Zheng, Xiangtao
作者单位1.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Gong, Tengfei,Zheng, Xiangtao. Multisource Compensation Network for Remote Sensing Cross-Domain Scene Classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(4):2504-2515.
APA Lu, Xiaoqiang,Gong, Tengfei,&Zheng, Xiangtao.(2020).Multisource Compensation Network for Remote Sensing Cross-Domain Scene Classification.IEEE Transactions on Geoscience and Remote Sensing,58(4),2504-2515.
MLA Lu, Xiaoqiang,et al."Multisource Compensation Network for Remote Sensing Cross-Domain Scene Classification".IEEE Transactions on Geoscience and Remote Sensing 58.4(2020):2504-2515.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Multisource Compensa(2825KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaoqiang]的文章
[Gong, Tengfei]的文章
[Zheng, Xiangtao]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaoqiang]的文章
[Gong, Tengfei]的文章
[Zheng, Xiangtao]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaoqiang]的文章
[Gong, Tengfei]的文章
[Zheng, Xiangtao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。