Retrieval Topic Recurrent Memory Network for Remote Sensing Image Captioning | |
Wang, Binqiang1,2; Zheng, Xiangtao1![]() ![]() | |
作者部门 | 光谱成像技术研究室 |
2020 | |
发表期刊 | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
![]() |
ISSN | 19391404;21511535 |
卷号 | 13页码:256-270 |
产权排序 | 1 |
摘要 | Remote sensing image (RSI) captioning aims to generate sentences to describe the content of RSIs. Generally, five sentences are used to describe the RSI in caption datasets. Every sentence can just focus on part of images' contents due to the different attention parts of annotation persons. One annotated sentence may be ambiguous compared with other four sentences. However, previous methods, treating five sentences separately, may generate an ambiguous sentence. In order to consider five sentences together, a collection of words, which named topic words contained common information among five sentences, is jointly incorporated into a captioning model to generate a determinate sentence that covers common contents in RSIs. Instead of employing a naive recurrent neural network, a memory network in which topic words can be naturally included as memory cells is introduced to generate sentences. A novel retrieval topic recurrent memory network is proposed to utilize the topic words. First, a topic repository is built to record the topic words in training datasets. Then, the retrieval strategy is exploited to obtain the topic words for a test image from topic repository. Finally, the retrieved topic words are incorporated into a recurrent memory network to guide the sentence generation. In addition to getting topics through retrieval, the topic words of test images can also be edited manually. The proposed method sheds light on controllability of caption generation. Experiments are conducted on two caption datasets to evaluate the proposed method. © 2008-2012 IEEE. |
关键词 | Controllable caption recurrentmemory network (MN) remote sensing image (RSI) caption generation retrieval topic |
DOI | 10.1109/JSTARS.2019.2959208 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000526639900021 |
出版者 | Institute of Electrical and Electronics Engineers |
EI入藏号 | 20201008260498 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/93292 |
专题 | 光谱成像技术研究室 |
通讯作者 | Zheng, Xiangtao |
作者单位 | 1.Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Wang, Binqiang,Zheng, Xiangtao,Qu, Bo,et al. Retrieval Topic Recurrent Memory Network for Remote Sensing Image Captioning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:256-270. |
APA | Wang, Binqiang,Zheng, Xiangtao,Qu, Bo,&Lu, Xiaoqiang.(2020).Retrieval Topic Recurrent Memory Network for Remote Sensing Image Captioning.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,13,256-270. |
MLA | Wang, Binqiang,et al."Retrieval Topic Recurrent Memory Network for Remote Sensing Image Captioning".IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13(2020):256-270. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Retrieval Topic Recu(5476KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论