OPT OpenIR  > 光谱成像技术研究室
Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development
Zhong, Jie1,2; Wang, Ying2; Li, Jie2; Xue, Xuetong2; Liu, Simin1; Wang, Miaomiao1; Gao, Xinbo2; Wang, Quan3; Yang, Jian1; Li, Xianjun1
作者部门光谱成像技术研究室
2020-01-15
发表期刊BIOMEDICAL ENGINEERING ONLINE
ISSN1475-925X
卷号19期号:1
产权排序3
摘要

Background Site-specific variations are challenges for pooling analyses in multi-center studies. This work aims to propose an inter-site harmonization method based on dual generative adversarial networks (GANs) for diffusion tensor imaging (DTI) derived metrics on neonatal brains. Results DTI-derived metrics (fractional anisotropy, FA; mean diffusivity, MD) are obtained on age-matched neonates without magnetic resonance imaging (MRI) abnormalities: 42 neonates from site 1 and 42 neonates from site 2. Significant inter-site differences of FA can be observed. The proposed harmonization approach and three conventional methods (the global-wise scaling, the voxel-wise scaling, and the ComBat) are performed on DTI-derived metrics from two sites. During the tract-based spatial statistics, inter-site differences can be removed by the proposed dual GANs method, the voxel-wise scaling, and the ComBat. Among these methods, the proposed method holds the lowest median values in absolute errors and root mean square errors. During the pooling analysis of two sites, Pearson correlation coefficients between FA and the postmenstrual age after harmonization are larger than those before harmonization. The effect sizes (Cohen's d between males and females) are also maintained by the harmonization procedure. Conclusions The proposed dual GANs-based harmonization method is effective to harmonize neonatal DTI-derived metrics from different sites. Results in this study further suggest that the GANs-based harmonization is a feasible pre-processing method for pooling analyses in multi-center studies.

关键词Harmonization Diffusion tensor imaging Neonate Generative adversarial network
DOI10.1186/s12938-020-0748-9
收录类别SCI
语种英语
WOS记录号WOS:000513663200001
出版者BMC
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/93263
专题光谱成像技术研究室
作者单位1.Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Radiol, Xian 710061, Peoples R China
2.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Biomed Spect Xian, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Zhong, Jie,Wang, Ying,Li, Jie,et al. Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development[J]. BIOMEDICAL ENGINEERING ONLINE,2020,19(1).
APA Zhong, Jie.,Wang, Ying.,Li, Jie.,Xue, Xuetong.,Liu, Simin.,...&Li, Xianjun.(2020).Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development.BIOMEDICAL ENGINEERING ONLINE,19(1).
MLA Zhong, Jie,et al."Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development".BIOMEDICAL ENGINEERING ONLINE 19.1(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Inter-site harmoniza(1638KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhong, Jie]的文章
[Wang, Ying]的文章
[Li, Jie]的文章
百度学术
百度学术中相似的文章
[Zhong, Jie]的文章
[Wang, Ying]的文章
[Li, Jie]的文章
必应学术
必应学术中相似的文章
[Zhong, Jie]的文章
[Wang, Ying]的文章
[Li, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。