OPT OpenIR  > 光学定向与测量技术研究室
Auto-focus algorithm based on improved SML evaluation function
Ma, Xiaoyu1,2; Li, Qiaoling1
2019
会议名称Applied Optics and Photonics China 2019: Optical Sensing and Imaging Technology, AOPC 2019
会议录名称AOPC 2019: Optical Sensing and Imaging Technology
卷号11338
会议日期2019-07-07
会议地点Beijing, China
出版者SPIE
产权排序1
摘要

The traditional spatial domain sharpness evaluation functions usually have a larger amount of calculation, and the calculation time is relatively longer. Besides, its anti-noise ability is weak, and it is easy to be disturbed by the background factors in the image. The above problems will have an impact on the real-time, sensitivity and reliability of the auto-focus system. In order to overcome these shortcomings, an improved SML sharpness evaluation function combined with threshold is proposed in this paper. This algorithm improve the SML function firstly, and make full use of the edge information of the image. Then a threshold is introduced to distinguish the edge points from non-edge points. So it can not only highlight the edge information while restraining the noise and the flat area in the background of the image, but also can reduce the calculation amount of the evaluation function and improve the real-time performance of the auto-focusing system. Finally verifies the effect of the improved evaluation function based on the simulation experiments. The results show that the algorithm proposed in this paper has better sensitivity and anti-noise ability, and can evaluate the sharpness of defocused images accurately and steadily. © 2019 copyright SPIE. Downloading of the abstract is permitted for personal use only.

关键词auto-focus sharpness evaluation function threshold gradient SML image processing
作者部门光学定向与测量技术研究室
DOI10.1117/12.2545624
收录类别EI ; CPCI
ISBN号9781510634480
语种英语
ISSN号0277786X;1996756X
WOS记录号WOS:000525830600068
EI入藏号20200308056974
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/93211
专题光学定向与测量技术研究室
作者单位1.Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an; 710119, China;
2.University of Chinese, Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Ma, Xiaoyu,Li, Qiaoling. Auto-focus algorithm based on improved SML evaluation function[C]:SPIE,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Auto-focus algorithm(546KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ma, Xiaoyu]的文章
[Li, Qiaoling]的文章
百度学术
百度学术中相似的文章
[Ma, Xiaoyu]的文章
[Li, Qiaoling]的文章
必应学术
必应学术中相似的文章
[Ma, Xiaoyu]的文章
[Li, Qiaoling]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。