OPT OpenIR  > 光谱成像技术研究室
KCCA-based radiation normalization method for hyperspectral remote sensing Images
Li, Haiwei1; Song, Liyao2; Yan, Qiangqiang1; Chen, Tieqiao1
2019
会议名称Applied Optics and Photonics China 2019: Optical Sensing and Imaging Technology, AOPC 2019
会议录名称AOPC 2019: Optical Sensing and Imaging Technology
卷号11338
会议日期2019-07-07
会议地点Beijing, China
出版者SPIE
产权排序1
摘要

Affected by the sensor itself, illumination, atmosphere, terrain and other factors, even if imaging the same region at the same time, the spectral characteristics of ground objects in different remote sensing images are also very different, and the surface parameters, ground object classification and target recognition results of the inversion are also different, which brings great uncertainty to quantitative analysis. The relative radiation correction effect of PIF, method is obvious and the operation is simple, and the accuracy of the effect depends greatly on the selection of the PIF point. The general relative radiometric correction methods are linearization correction without considering the nonlinear difference of multi-temporal images. At present, most radiation normalization methods assume that the transformation relation between images is linear, extract PIF points and establish radiation transformation model. In this paper, Kernel Canonical Correlation Analysis (KCCA) is used for the first time to normalize the radiation between multi-temporal hyperspectral images, which can greatly reduce the nonlinear difference in relative radiation correction. Based on the theory of nuclear canonical correlation analysis, the radiation normalization method of multi-temporal aerial hyperspectral images is proposed. The feature points of PIF are extracted in the nuclear projection space, and the nonlinear model is used for the radiation normalization of hyperspectral images, to improve the radiation normalization accuracy of multi-temporal hyperspectral images. Compared with Canonical Correlation Analysis (CCA), the number and precision of PIF point extraction can be significantly improved. This method can satisfy the radiation normalization between aerial hyperspectral multi-temporal images. © 2019 copyright SPIE. Downloading of the abstract is permitted for personal use only.

关键词Kernel Canonical Correlation Analysis (KCCA) Radiation normalization Pseudo-invariant featurepoints (PIF) Multivariate change detection
作者部门光谱成像技术研究室
DOI10.1117/12.2548069
收录类别EI ; CPCI
ISBN号9781510634480
语种英语
ISSN号0277786X;1996756X
WOS记录号WOS:000525830600117
EI入藏号20200308056853
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/93207
专题光谱成像技术研究室
作者单位1.Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences, Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi'an; 710119, China;
2.Xi'an Jiaotong University, Xi'an; 710049, China
推荐引用方式
GB/T 7714
Li, Haiwei,Song, Liyao,Yan, Qiangqiang,et al. KCCA-based radiation normalization method for hyperspectral remote sensing Images[C]:SPIE,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
KCCA-based radiation(613KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Haiwei]的文章
[Song, Liyao]的文章
[Yan, Qiangqiang]的文章
百度学术
百度学术中相似的文章
[Li, Haiwei]的文章
[Song, Liyao]的文章
[Yan, Qiangqiang]的文章
必应学术
必应学术中相似的文章
[Li, Haiwei]的文章
[Song, Liyao]的文章
[Yan, Qiangqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。