Imaging Enhancement of Light-Sheet Fluorescence Microscopy via Deep Learning | |
Bai, Chen; Liu, Chao; Yu, Xianghua; Peng, Tong; Min, Junwei![]() ![]() ![]() | |
作者部门 | 瞬态光学研究室 |
2019-11-15 | |
发表期刊 | IEEE Photonics Technology Letters
![]() |
ISSN | 10411135;19410174 |
卷号 | 31期号:22页码:1803-1806 |
产权排序 | 1 |
摘要 | The complementary beam subtraction (CBS) method can reduce the out-of-focus background and improve the axial resolution in light-sheet fluorescence microscopy (LSFM) via double scanning a Bessel and the complementary beams. With the assistance of a compressed blind deconvolution and denoising (CBDD) algorithm, the noise and blurring incurred during CBS imaging can be further removed. However, this approach requires double scanning and large computational cost. Here, we propose a deep learning-based method for LSFM, which can reconstruct high-quality images directly from the conventional Bessel beam (BB) light-sheet via a single scan. The image quality achievable with this CBS-Deep method is competitive with or better than the CBS-CBDD method, while the speed of image reconstruction is about 100 times faster. Accordingly, the proposed method can significantly improve the practicality of the CBS-CBDD system by reducing both scanning behavior and reconstruction time. The results show that this cost-effective and convenient method enables high-quality LSFM techniques to be developed and applied. © 1989-2012 IEEE. |
关键词 | Convolutional neural networks residual learning light-sheet fluorescence microscopy |
DOI | 10.1109/LPT.2019.2948030 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS记录号 | WOS:000516532800011 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20200208022085 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/93183 |
专题 | 瞬态光学研究室 |
通讯作者 | Yu, Xianghua |
作者单位 | State Key Laboratory of Transient Optics and Photonics, Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China |
推荐引用方式 GB/T 7714 | Bai, Chen,Liu, Chao,Yu, Xianghua,et al. Imaging Enhancement of Light-Sheet Fluorescence Microscopy via Deep Learning[J]. IEEE Photonics Technology Letters,2019,31(22):1803-1806. |
APA | Bai, Chen.,Liu, Chao.,Yu, Xianghua.,Peng, Tong.,Min, Junwei.,...&Yao, Baoli.(2019).Imaging Enhancement of Light-Sheet Fluorescence Microscopy via Deep Learning.IEEE Photonics Technology Letters,31(22),1803-1806. |
MLA | Bai, Chen,et al."Imaging Enhancement of Light-Sheet Fluorescence Microscopy via Deep Learning".IEEE Photonics Technology Letters 31.22(2019):1803-1806. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Imaging Enhancement (1480KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论