OPT OpenIR  > 光谱成像技术研究室
An efficient framework for unsupervised feature selection
Zhang, Han1,2; Zhang, Rui3; Nie, Feiping1,2; Li, Xuelong1,2
作者部门光谱成像技术研究室
2019-11-13
发表期刊NEUROCOMPUTING
ISSN0925-2312;1872-8286
卷号366页码:194-207
产权排序3
摘要

In these years, the task of fast unsupervised feature selection attracts much attentions with the increasing number of data collected from the physical world. To speed up the running time of algorithms, the bipartite graph theory has been applied in many large-scale tasks, including fast clustering, fast feature extraction, etc. Inspired by this, we present a novel bipartite graph based fast feature selection approach named Efficient Unsupervised Feature Selection (EUFS). Compared to the existing methods focusing on the same topic, EUFS is advanced in two aspects: (1) we learn a high-quality discrete indicator matrix for these unlabelled data by virtue of bipartite graph based spectral clustering, instead of obtaining an implicit cluster structure matrix; (2) we learn a row-sparse matrix for evaluating features via a generalized uncorrelated regression model supervised by the achieved indicator matrix, which succeeds in exploring the discriminative and uncorrelated features. Correspondingly, the features selected by our model could achieve an excellent clustering or classification performance while maintaining a low computational complexity. Experimentally, the results of EUFS compared to five state-of-the-art algorithms and one baseline on ten benchmark datasets verifies its efficiency and superiority. (C) 2019 Published by Elsevier B.V.

关键词Efficient unsupervised feature selection Bipartite graph Discrete indicator matrix Uncorrelated regression model
DOI10.1016/j.neucom.2019.07.020
收录类别SCI
语种英语
WOS记录号WOS:000488202500019
出版者ELSEVIER
引用统计
被引频次:21[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31885
专题光谱成像技术研究室
通讯作者Nie, Feiping
作者单位1.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
2.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Han,Zhang, Rui,Nie, Feiping,et al. An efficient framework for unsupervised feature selection[J]. NEUROCOMPUTING,2019,366:194-207.
APA Zhang, Han,Zhang, Rui,Nie, Feiping,&Li, Xuelong.(2019).An efficient framework for unsupervised feature selection.NEUROCOMPUTING,366,194-207.
MLA Zhang, Han,et al."An efficient framework for unsupervised feature selection".NEUROCOMPUTING 366(2019):194-207.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
An efficient framewo(2196KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Han]的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
百度学术
百度学术中相似的文章
[Zhang, Han]的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
必应学术
必应学术中相似的文章
[Zhang, Han]的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。