Sparse representation based medical ultrasound images denoising with reshaped-RED | |
Pu, Xiaoqiu1,2; Li, Zhixin1,2; Li, Baopeng1; Lei, Hao1![]() ![]() | |
2019 | |
会议名称 | 11th International Conference on Digital Image Processing, ICDIP 2019 |
会议录名称 | Eleventh International Conference on Digital Image Processing, ICDIP 2019 |
卷号 | 11179 |
会议日期 | 2019-05-10 |
会议地点 | Guangzhou, China |
出版者 | SPIE |
产权排序 | 1 |
摘要 | Medical ultrasound images are usually corrupted by the noise during their acquisition known as speckle. Speckle noise removal is a key stage in medical ultrasound image processing. Due to the ill-posed feature of image denoising, many regularization methods have been proved effective. This paper introduces an approach which collaborate both sparse dictionary learning and regularization method to remove the speckle noise. The method trains a redundant dictionary by an efficient dictionary learning algorithm, and then uses it in an image prior regularization model to obtain the recovered image. Experimental results demonstrate that the proposed model has enhanced performance both in despeckling and texture-preserving of medical ultrasound images compared to some popular methods. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. |
关键词 | Ultrasound image speckle noise sparse representation regularization by denoising variable splitting |
作者部门 | 空间光学技术研究室 |
DOI | 10.1117/12.2540245 |
收录类别 | EI ; CPCI |
ISBN号 | 9781510630758 |
语种 | 英语 |
ISSN号 | 0277786X;1996756X |
WOS记录号 | WOS:000511106700019 |
EI入藏号 | 20193907475158 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/31869 |
专题 | 空间光学技术研究室 |
作者单位 | 1.Space Optics Laboratory, Xi'An Institute of Optics and Precision Mechanics of CAS, Xi'an; 710119, China; 2.University of Chinese Academy of Sciences, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Pu, Xiaoqiu,Li, Zhixin,Li, Baopeng,et al. Sparse representation based medical ultrasound images denoising with reshaped-RED[C]:SPIE,2019. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Sparse representatio(1021KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论