OPT OpenIR  > 空间光学技术研究室
Sparse representation based medical ultrasound images denoising with reshaped-RED
Pu, Xiaoqiu1,2; Li, Zhixin1,2; Li, Baopeng1; Lei, Hao1; Gao, Wei1; Liu, Jiwei1,2
2019
会议名称11th International Conference on Digital Image Processing, ICDIP 2019
会议录名称Eleventh International Conference on Digital Image Processing, ICDIP 2019
卷号11179
会议日期2019-05-10
会议地点Guangzhou, China
出版者SPIE
产权排序1
摘要

Medical ultrasound images are usually corrupted by the noise during their acquisition known as speckle. Speckle noise removal is a key stage in medical ultrasound image processing. Due to the ill-posed feature of image denoising, many regularization methods have been proved effective. This paper introduces an approach which collaborate both sparse dictionary learning and regularization method to remove the speckle noise. The method trains a redundant dictionary by an efficient dictionary learning algorithm, and then uses it in an image prior regularization model to obtain the recovered image. Experimental results demonstrate that the proposed model has enhanced performance both in despeckling and texture-preserving of medical ultrasound images compared to some popular methods. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

关键词Ultrasound image speckle noise sparse representation regularization by denoising variable splitting
作者部门空间光学技术研究室
DOI10.1117/12.2540245
收录类别EI ; CPCI
ISBN号9781510630758
语种英语
ISSN号0277786X;1996756X
WOS记录号WOS:000511106700019
EI入藏号20193907475158
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/31869
专题空间光学技术研究室
作者单位1.Space Optics Laboratory, Xi'An Institute of Optics and Precision Mechanics of CAS, Xi'an; 710119, China;
2.University of Chinese Academy of Sciences, Beijing; 100049, China
推荐引用方式
GB/T 7714
Pu, Xiaoqiu,Li, Zhixin,Li, Baopeng,et al. Sparse representation based medical ultrasound images denoising with reshaped-RED[C]:SPIE,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Sparse representatio(1021KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pu, Xiaoqiu]的文章
[Li, Zhixin]的文章
[Li, Baopeng]的文章
百度学术
百度学术中相似的文章
[Pu, Xiaoqiu]的文章
[Li, Zhixin]的文章
[Li, Baopeng]的文章
必应学术
必应学术中相似的文章
[Pu, Xiaoqiu]的文章
[Li, Zhixin]的文章
[Li, Baopeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。