OPT OpenIR  > 光谱成像技术研究室
Flexible Affinity Matrix Learning for Unsupervised and Semisupervised Classification
Fang, Xiaozhao1; Han, Na1; Wong, Wai Keung2,3; Teng, Shaohua1; Wu, Jigang1; Xie, Shengli4; Li, Xuelong5,6
作者部门光谱成像技术研究室
2019-04
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X;2162-2388
卷号30期号:4页码:1133-1149
产权排序5
摘要

In this paper, we propose a unified model called flexible affinity matrix learning (FAML) for unsupervised and semisupervised classification by exploiting both the relationship among data and the clustering structure simultaneously. To capture the relationship among data, we exploit the self-expressiveness property of data to learn a structured matrix in which the structures are induced by different norms. A rank constraint is imposed on the Laplacian matrix of the desired affinity matrix, so that the connected components of data are exactly equal to the cluster number. Thus, the clustering structure is explicit in the learned affinity matrix. By making the estimated affinity matrix approximate the structured matrix during the learning procedure, FAML allows the affinity matrix itself to be adaptively adjusted such that the learned affinity matrix can well capture both the relationship among data and the clustering structure. Thus, FAML has the potential to perform better than other related methods. We derive optimization algorithms to solve the corresponding problems. Extensive unsupervised and semisupervised classification experiments on both synthetic data and real-world benchmark data sets show that the proposed FAML consistently outperforms the state-of-the-art methods.

关键词Affinity matrix clustering low-rank representation (LRR) sparse representation
DOI10.1109/TNNLS.2018.2861839
收录类别SCI
语种英语
WOS记录号WOS:000461854100013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:37[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31349
专题光谱成像技术研究室
通讯作者Wong, Wai Keung
作者单位1.Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
2.Hong Kong Polytech Univ, Inst Text & Clothing, Hong Kong, Peoples R China
3.Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518055, Peoples R China
4.Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
6.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Fang, Xiaozhao,Han, Na,Wong, Wai Keung,et al. Flexible Affinity Matrix Learning for Unsupervised and Semisupervised Classification[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2019,30(4):1133-1149.
APA Fang, Xiaozhao.,Han, Na.,Wong, Wai Keung.,Teng, Shaohua.,Wu, Jigang.,...&Li, Xuelong.(2019).Flexible Affinity Matrix Learning for Unsupervised and Semisupervised Classification.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,30(4),1133-1149.
MLA Fang, Xiaozhao,et al."Flexible Affinity Matrix Learning for Unsupervised and Semisupervised Classification".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 30.4(2019):1133-1149.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Flexible Affinity Ma(4698KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fang, Xiaozhao]的文章
[Han, Na]的文章
[Wong, Wai Keung]的文章
百度学术
百度学术中相似的文章
[Fang, Xiaozhao]的文章
[Han, Na]的文章
[Wong, Wai Keung]的文章
必应学术
必应学术中相似的文章
[Fang, Xiaozhao]的文章
[Han, Na]的文章
[Wong, Wai Keung]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。