Unsupervised Feature Selection with Local Structure Learning | |
Yang, Sheng1; Nie, Feiping1; Li, Xuelong2![]() | |
2018-08-29 | |
会议名称 | 25th IEEE International Conference on Image Processing, ICIP 2018 |
会议录名称 | 2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings |
页码 | 3398-3402 |
会议日期 | 2018-10-07 |
会议地点 | Athens, Greece |
出版者 | IEEE Computer Society |
产权排序 | 2 |
摘要 | Conventional graph-based unsupervised feature selection approaches carry out the feature selection requiring two stages: first, constructing the data similarity matrix and next performing feature selection. In this way, the similarity matrix is invariably kept unchanged, totally separated from the process of feature selection and the performance of feature selection highly depends on the initially constructed similarity matrix. In order to address this problem, a novel unsupervised feature selection method is proposed in this paper where constructing similarity matrix and performing feature selection are together incorporated into a coherent model. Besides, the constructed similarity matrix has k connected components (k is the number of data clusters). At last, five state-of-the-art unsupervised feature selection methods are compared to validate the effectiveness of the proposed method. © 2018 IEEE. |
作者部门 | 光谱成像技术研究室 |
DOI | 10.1109/ICIP.2018.8451101 |
收录类别 | EI |
ISBN号 | 9781479970612 |
语种 | 英语 |
ISSN号 | 15224880 |
EI入藏号 | 20191206646371 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/31348 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.School of Computer Science, Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi; 710072, China; 2.Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi; 710119, China |
推荐引用方式 GB/T 7714 | Yang, Sheng,Nie, Feiping,Li, Xuelong. Unsupervised Feature Selection with Local Structure Learning[C]:IEEE Computer Society,2018:3398-3402. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Unsupervised Feature(641KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论