OPT OpenIR  > 光学影像学习与分析中心
Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification
Wang, Qi1,2,3; He, Xiang1,2; Li, Xuelong4
作者部门光学影像学习与分析中心
2019-02
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892;1558-0644
卷号57期号:2页码:911-923
产权排序4
摘要

Hyperspectral image (HSI) classification, which aims to assign an accurate label for hyperspectral pixels, has drawn great interest in recent years. Although low-rank representation (LRR) has been used to classify HSI, its ability to segment each class from the whole HSI data has not been exploited fully yet. LRR has a good capacity to capture the underlying low-dimensional subspaces embedded in original data. However, there are still two drawbacks for LRR. First, the LRR does not consider the local geometric structure within data, which makes the local correlation among neighboring data easily ignored. Second, the representation obtained by solving LRR is not discriminative enough to separate different data. In this paper, a novel locality- and structure-regularized LRR (LSLRR) model is proposed for HSI classification. To overcome the above-mentioned limitations, we present locality constraint criterion and structure preserving strategy to improve the classical LRR. Specifically, we introduce a new distance metric, which combines both spatial and spectral features, to explore the local similarity of pixels. Thus, the global and local structures of HSI data can be exploited sufficiently. In addition, we propose a structural constraint to make the representation have a near-block-diagonal structure. This helps to determine the final classification labels directly. Extensive experiments have been conducted on three popular HSI data sets. And the experimental results demonstrate that the proposed LSLRR outperforms other state-of-the-art methods.

关键词Block-diagonal structure hyperspectral image (HSI) classification low-rank representation (LRR)
DOI10.1109/TGRS.2018.2862899
收录类别SCI
语种英语
WOS记录号WOS:000456936500022
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31165
专题光学影像学习与分析中心
通讯作者Wang, Qi
作者单位1.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
2.Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China
3.Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Shaanxi, Peoples R China
4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Qi,He, Xiang,Li, Xuelong. Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2019,57(2):911-923.
APA Wang, Qi,He, Xiang,&Li, Xuelong.(2019).Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,57(2),911-923.
MLA Wang, Qi,et al."Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 57.2(2019):911-923.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Locality and Structu(2021KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Qi]的文章
[He, Xiang]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Wang, Qi]的文章
[He, Xiang]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Wang, Qi]的文章
[He, Xiang]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Locality and Structure Regularized Low Rank Representation for Hyperspectral Image Classification.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。