OPT OpenIR  > 光学影像学习与分析中心
Muti-stage learning for gender and age prediction
Fang, Jie1,2; Yuan, Yuan3; Lu, Xiaoqiang1; Feng, Yachuang1
作者部门光学影像学习与分析中心
2019-03-21
发表期刊NEUROCOMPUTING
ISSN0925-2312;1872-8286
卷号334页码:114-124
产权排序1
摘要

Automatic gender and age prediction has become relevant to an increasing amount of applications, particularly under the rise of social platforms and social media. However, the performances of existing methods on real-world images are still not satisfactory as we expected, especially when compared to that of face recognition. The reason is that, facial images for gender and age prediction have inherent small inter-class and big intra-class differences, i.e., two images with different skin colors and same age category label have big intra-class difference. However, most existing methods have not constructed discriminative representations for digging out these inherent characteristics very well. In this paper, a method based on muti-stage learning is proposed: The first stage is marking the object regions with an encoder-decoder based segmentation network. Specifically, the segmentation network can classify each pixel into two classes, "people" and others, and only the "people" regions are used for the subsequent processing. The second stage is precisely predicting the gender and age information with the proposed prediction network, which encodes global information, local region information and the interactions among different local regions into the final representation, and then finalizes the prediction. Additionally, we evaluate our method on three public and challenging datasets, and the experimental results verify the effectiveness of our proposed method. (C) 2019 Elsevier B.V. All rights reserved.

关键词Gender and age prediction Muti-stage learning Segmentation network
DOI10.1016/j.neucom.2018.12.073
收录类别SCI
语种英语
WOS记录号WOS:000458626300011
出版者ELSEVIER SCIENCE BV
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31158
专题光学影像学习与分析中心
通讯作者Lu, Xiaoqiang
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Shaanxi, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Fang, Jie,Yuan, Yuan,Lu, Xiaoqiang,et al. Muti-stage learning for gender and age prediction[J]. NEUROCOMPUTING,2019,334:114-124.
APA Fang, Jie,Yuan, Yuan,Lu, Xiaoqiang,&Feng, Yachuang.(2019).Muti-stage learning for gender and age prediction.NEUROCOMPUTING,334,114-124.
MLA Fang, Jie,et al."Muti-stage learning for gender and age prediction".NEUROCOMPUTING 334(2019):114-124.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Muti-stage learning (2603KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fang, Jie]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Fang, Jie]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Fang, Jie]的文章
[Yuan, Yuan]的文章
[Lu, Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Muti-stage learning for gender and age prediction.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。