OPT OpenIR  > 光学影像学习与分析中心
Self-Weighted Supervised Discriminative Feature Selection
Zhang, Rui1,2; Nie, Feiping1,2; Li, Xuelong3
作者部门光学影像学习与分析中心
2018-08
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号29期号:8页码:3913-3918
产权排序3
摘要

In this brief, a novel self-weighted orthogonal linear discriminant analysis (SOLDA) problem is proposed, and a self-weighted supervised discriminative feature selection (SSD-FS) method is derived by introducing sparsity-inducing regularization to the proposed SOLDA problem. By using the row-sparse projection, the proposed SSD-FS method is superior to multiple sparse feature selection approaches, which can overly suppress the nonzero rows such that the associated features are insufficient for selection. More specifically, the orthogonal constraint ensures the minimal number of selectable features for the proposed SSD-FS method. In addition, the proposed feature selection method is able to harness the discriminant power such that the discriminative features are selected. Consequently, the effectiveness of the proposed SSD-FS method is validated theoretically and experimentally.

关键词Row-sparse Projection Self-weighted Orthogonal Linear Discriminant Analysis (Solda) Sparsity-inducing Regularization Supervised Feature Selection
学科领域Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
DOI10.1109/TNNLS.2017.2740341
收录类别SCI ; EI
语种英语
WOS研究方向Computer Science ; Engineering
WOS记录号WOS:000439627700052
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20183105639566
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30535
专题光学影像学习与分析中心
通讯作者Nie, Feiping
作者单位1.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
2.Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr Opt Imagery Anal & Learning, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Rui,Nie, Feiping,Li, Xuelong. Self-Weighted Supervised Discriminative Feature Selection[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(8):3913-3918.
APA Zhang, Rui,Nie, Feiping,&Li, Xuelong.(2018).Self-Weighted Supervised Discriminative Feature Selection.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(8),3913-3918.
MLA Zhang, Rui,et al."Self-Weighted Supervised Discriminative Feature Selection".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.8(2018):3913-3918.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Self-Weighted Superv(1093KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Self-Weighted Supervised Discriminative Feature Selection.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。