OPT OpenIR  > 光学影像学习与分析中心
Structurally Incoherent Low-Rank Nonnegative Matrix Factorization for Image Classification
Lu, Yuwu1,2; Yuan, Chun3; Zhu, Wenwu4; Li, Xuelong5
作者部门光学影像学习与分析中心
2018-11
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号27期号:11页码:5248-5260
产权排序5
摘要

As a popular dimensionality reduction method, nonnegative matrix factorization (NMF) has been widely used in image classification. However, the NMF does not consider discriminant information from the data themselves. In addition, most NMF-based methods use the Euclidean distance as a metric, which is sensitive to noise or outliers in data. To solve these problems, in this paper, we introduce structural incoherence and low-rank to NMF and propose a novel nonnegative factorization method, called structurally incoherent low-rank NMF (SILR-NMF), in which we jointly consider structural incoherence and low-rank properties of data for image classification. For the corrupted data, we use the L-1 norm as a constraint to ensure the noise is sparse. SILR-NMF learns a clean data matrix from the noisy data by low-rank learning. As a result, the SILR-NMF can capture the global structure information of the data, which is more robust than local information to noise. By introducing the structural incoherence of the learned clean data, SILR-NMF ensures the clean data points from different classes are as independent as possible. To verify the performance of the proposed method, extensive experiments are conducted on six image databases. The experimental results demonstrate that our proposed method has substantial gain over existing NMF approaches.

关键词Nmf Structurally Incoherent Low-rank Image Classification
学科领域Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
DOI10.1109/TIP.2018.2855433
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS记录号WOS:000440203500004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30533
专题光学影像学习与分析中心
通讯作者Yuan, Chun
作者单位1.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518055, Peoples R China
2.Hong Kong Polytech Univ, Inst Text & Clothing, Hong Kong, Hong Kong, Peoples R China
3.Tsinghua Univ, Grad Sch Shenzhen, Tsinghua CUHK Joint Res Ctr Media Sci Technol & S, Shenzhen 518055, Peoples R China
4.Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
5.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Lu, Yuwu,Yuan, Chun,Zhu, Wenwu,et al. Structurally Incoherent Low-Rank Nonnegative Matrix Factorization for Image Classification[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(11):5248-5260.
APA Lu, Yuwu,Yuan, Chun,Zhu, Wenwu,&Li, Xuelong.(2018).Structurally Incoherent Low-Rank Nonnegative Matrix Factorization for Image Classification.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(11),5248-5260.
MLA Lu, Yuwu,et al."Structurally Incoherent Low-Rank Nonnegative Matrix Factorization for Image Classification".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.11(2018):5248-5260.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Structurally Incoher(2165KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Yuwu]的文章
[Yuan, Chun]的文章
[Zhu, Wenwu]的文章
百度学术
百度学术中相似的文章
[Lu, Yuwu]的文章
[Yuan, Chun]的文章
[Zhu, Wenwu]的文章
必应学术
必应学术中相似的文章
[Lu, Yuwu]的文章
[Yuan, Chun]的文章
[Zhu, Wenwu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Structurally Incoherent Low-Rank Nonnegative Matrix Factorization for Image Classification.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。