OPT OpenIR  > 光谱成像技术研究室
Structure preserving unsupervised feature selection
Lu, Quanmao1,2; Li, Xuelong1; Dong, Yongsheng1,3; Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China.
作者部门光学影像学习与分析中心
2018-08-02
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号301页码:36-45
产权排序1
摘要

Spectral analysis was usually used to guide unsupervised feature selection. However, the performances of these methods are not always satisfactory due to that they may generate continuous pseudo labels to approximate the discrete real labels. In this paper, a novel unsupervised feature selection method is proposed based on self-expression model. Unlike existing spectral analysis based methods, we utilize self-expression model to capture the relationships between the features without learning the cluster labels. Specifically, each feature can be reconstructed by using a linear combination of all the features in the original feature space, and a representative feature should give a large weight to reconstruct other features. Besides, a structure preserved constraint is incorporated into our model for keeping the local manifold structure of the data. Then an efficient alternative iterative algorithm is utilized to solve our proposed model with the theoretical analysis on its convergence. The experimental results on different datasets show the effectiveness of our method.

文章类型Article
关键词Unsupervised Feature Selection Self Expression Model Structure Preserving
学科领域Computer Science, Artificial Intelligence
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2018.04.001
收录类别SCI ; EI
关键词[WOS]REGRESSION ; FRAMEWORK
语种英语
WOS研究方向Computer Science
项目资助者National Natural Science Foundation of China(61761130079 ; Key Research Program of Frontier Sciences, CAS(QYZDY-SSW-JSC044) ; Training Program for the Young-Backbone Teachers in Universities of Henan Province(2017GGJS065) ; State Key Laboratory of Virtual Reality Technology and Systems(BUAAVR-16KF-04) ; U1604153)
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000432491500004
EI入藏号20181705059675
引用统计
被引频次:35[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30311
专题光谱成像技术研究室
通讯作者Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China.
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
2.Univ Chinese Acad Sci, 19A Yuquanlu, Beijing 100049, Peoples R China
3.Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Henan, Peoples R China
推荐引用方式
GB/T 7714
Lu, Quanmao,Li, Xuelong,Dong, Yongsheng,et al. Structure preserving unsupervised feature selection[J]. NEUROCOMPUTING,2018,301:36-45.
APA Lu, Quanmao,Li, Xuelong,Dong, Yongsheng,&Dong, YS .(2018).Structure preserving unsupervised feature selection.NEUROCOMPUTING,301,36-45.
MLA Lu, Quanmao,et al."Structure preserving unsupervised feature selection".NEUROCOMPUTING 301(2018):36-45.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Structure preserving(852KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Quanmao]的文章
[Li, Xuelong]的文章
[Dong, Yongsheng]的文章
百度学术
百度学术中相似的文章
[Lu, Quanmao]的文章
[Li, Xuelong]的文章
[Dong, Yongsheng]的文章
必应学术
必应学术中相似的文章
[Lu, Quanmao]的文章
[Li, Xuelong]的文章
[Dong, Yongsheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。