Structure preserving unsupervised feature selection | |
Lu, Quanmao1,2![]() ![]() | |
作者部门 | 光学影像学习与分析中心 |
2018-08-02 | |
发表期刊 | NEUROCOMPUTING
![]() |
ISSN | 0925-2312 |
卷号 | 301页码:36-45 |
产权排序 | 1 |
摘要 | Spectral analysis was usually used to guide unsupervised feature selection. However, the performances of these methods are not always satisfactory due to that they may generate continuous pseudo labels to approximate the discrete real labels. In this paper, a novel unsupervised feature selection method is proposed based on self-expression model. Unlike existing spectral analysis based methods, we utilize self-expression model to capture the relationships between the features without learning the cluster labels. Specifically, each feature can be reconstructed by using a linear combination of all the features in the original feature space, and a representative feature should give a large weight to reconstruct other features. Besides, a structure preserved constraint is incorporated into our model for keeping the local manifold structure of the data. Then an efficient alternative iterative algorithm is utilized to solve our proposed model with the theoretical analysis on its convergence. The experimental results on different datasets show the effectiveness of our method. |
文章类型 | Article |
关键词 | Unsupervised Feature Selection Self Expression Model Structure Preserving |
学科领域 | Computer Science, Artificial Intelligence |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1016/j.neucom.2018.04.001 |
收录类别 | SCI ; EI |
关键词[WOS] | REGRESSION ; FRAMEWORK |
语种 | 英语 |
WOS研究方向 | Computer Science |
项目资助者 | National Natural Science Foundation of China(61761130079 ; Key Research Program of Frontier Sciences, CAS(QYZDY-SSW-JSC044) ; Training Program for the Young-Backbone Teachers in Universities of Henan Province(2017GGJS065) ; State Key Laboratory of Virtual Reality Technology and Systems(BUAAVR-16KF-04) ; U1604153) |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000432491500004 |
EI入藏号 | 20181705059675 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/30311 |
专题 | 光谱成像技术研究室 |
通讯作者 | Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China. |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China 2.Univ Chinese Acad Sci, 19A Yuquanlu, Beijing 100049, Peoples R China 3.Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Henan, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Quanmao,Li, Xuelong,Dong, Yongsheng,et al. Structure preserving unsupervised feature selection[J]. NEUROCOMPUTING,2018,301:36-45. |
APA | Lu, Quanmao,Li, Xuelong,Dong, Yongsheng,&Dong, YS .(2018).Structure preserving unsupervised feature selection.NEUROCOMPUTING,301,36-45. |
MLA | Lu, Quanmao,et al."Structure preserving unsupervised feature selection".NEUROCOMPUTING 301(2018):36-45. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Structure preserving(852KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论