OPT OpenIR  > 光谱成像技术研究室
Subspace clustering guided convex nonnegative matrix factorization
Cui, Guosheng1,2; Li, Xuelong1; Dong, Yongsheng1; Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China.
作者部门光学影像学习与分析中心
2018-05-31
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号292页码:38-48
产权排序1
摘要As one of the most important information of the data, the geometry structure information is usually modeled by a similarity graph to enforce the effectiveness of nonnegative matrix factorization (NMF). However, pairwise distance based graph is sensitive to noise and can not capture the subspace structure of the data. Reconstruction coefficients based graph can capture the subspace structure of the data, but the procedure of building the representation based graph is usually independent to the framework of NMF. To address this issue, a novel subspace clustering guided convex nonnegative matrix factorization (SC-CNMF) is proposed. In this NMF framework, the nonnegative subspace clustering is incorporated to learning the representation based graph, and meanwhile, a convex nonnegative matrix factorization is also updated simultaneously. To tackle the noise influence of the dataset, only k largest entries of each representation are kept in the subspace clustering. To capture the complicated geometry structure of the data, multiple centroids are also introduced to describe each cluster. Additionally, a row constraint is used to remove the relevance among the rows of the encoding matrix, which can help to improve the clustering performance of the proposed model. For the proposed NMF framework, two different objective functions with different optimizing schemes are designed. Image clustering experiments are conducted to demonstrate the effectiveness of the proposed methods on several datasets and compared with some related works based on NMF together with k-means clustering method and PCA as baseline. (c) 2018 Elsevier B.V. All rights reserved.
文章类型Article
关键词Convex Nonnegative Matrix Factorization Subspace Clustering Multiple Centroids Geometry Structure Image Clustering
学科领域Computer Science, Artificial Intelligence
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2018.02.067
收录类别SCI
关键词[WOS]REPRESENTATION
语种英语
WOS研究方向Computer Science
项目资助者National Natural Science Foundation of China(61761130079 ; Key Research Program of Frontier Sciences, CAS(QYZDY-SSW-JSC044) ; Training Program for the Young-Backbone Teachers in Universities of Henan Province(2017GGJS065) ; State Key Laboratory of Virtual Reality Technology and Systems(BUAAVR-16KF-04) ; U1604153)
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000429321400003
引用统计
被引频次:44[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30050
专题光谱成像技术研究室
通讯作者Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China.
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
2.Univ Chinese Acad Sci, 19A Yuquanlu, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Cui, Guosheng,Li, Xuelong,Dong, Yongsheng,et al. Subspace clustering guided convex nonnegative matrix factorization[J]. NEUROCOMPUTING,2018,292:38-48.
APA Cui, Guosheng,Li, Xuelong,Dong, Yongsheng,&Dong, YS .(2018).Subspace clustering guided convex nonnegative matrix factorization.NEUROCOMPUTING,292,38-48.
MLA Cui, Guosheng,et al."Subspace clustering guided convex nonnegative matrix factorization".NEUROCOMPUTING 292(2018):38-48.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Subspace clustering (979KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui, Guosheng]的文章
[Li, Xuelong]的文章
[Dong, Yongsheng]的文章
百度学术
百度学术中相似的文章
[Cui, Guosheng]的文章
[Li, Xuelong]的文章
[Dong, Yongsheng]的文章
必应学术
必应学术中相似的文章
[Cui, Guosheng]的文章
[Li, Xuelong]的文章
[Dong, Yongsheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。