OPT OpenIR  > 光谱成像技术研究室
Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement
Yan, Yijun1; Ren, Jinchang1; Sun, Genyun2; Zhao, Huimin3; Han, Junwei4; Li, Xuelong5; Marshall, Stephen1; Zhan, Jin3; Ren, Jinchang (jinchang.ren@strath.ac.uk)
作者部门光学影像学习与分析中心
2018-07-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号79页码:65-78
产权排序5
摘要

Visual attention is a kind of fundamental cognitive capability that allows human beings to focus on the region of interests (ROls) under complex natural environments. What kind of ROls that we pay attention to mainly depends on two distinct types of attentional mechanisms. The bottom-up mechanism can guide our detection of the salient objects and regions by externally driven factors, i.e. color and location, whilst the top-down mechanism controls our biasing attention based on prior knowledge and cognitive strategies being provided by visual cortex. However, how to practically use and fuse both attentional mechanisms for salient object detection has not been sufficiently explored. To the end, we propose in this paper an integrated framework consisting of bottom-up and top-down attention mechanisms that enable attention to be computed at the level of salient objects and/or regions. Within our framework, the model of a bottom-up mechanism is guided by the gestalt-laws of perception. We interpreted gestalt-laws of homogeneity, similarity, proximity and figure and ground in link with color, spatial contrast at the level of regions and objects to produce feature contrast map. The model of top-down mechanism aims to use a formal computational model to describe the background connectivity of the attention and produce the priority map. Integrating both mechanisms and applying to salient object detection, our results have demonstrated that the proposed method consistently outperforms a number of existing unsupervised approaches on five challenging and complicated datasets in terms of higher precision and recall rates, AP (average precision) and AUC (area under curve) values. (C) 2018 Elsevier Ltd. All rights reserved.

文章类型Article
关键词Background Connectivity Gestalt Laws Guided Optimization Image Saliency Detection Feature Fusion Human Vision Perception
WOS标题词Science & Technology ; Technology
DOI10.1016/j.patcog.2018.02.004
收录类别SCI ; EI
关键词[WOS]REGION DETECTION ; TOP-DOWN ; OBJECT SEGMENTATION ; BOTTOM-UP ; LEVEL ; MODEL ; MECHANISMS ; RETRIEVAL ; VISION ; SEARCH
语种英语
WOS研究方向Computer Science ; Engineering
项目资助者Natural Science Foundation of China(61672008 ; Fundamental Research Funds for the Central Universities(18CX05030A) ; Natural Science Foundation of Guangdong Province(2016A030311013) ; Guangdong Provincial Application-oriented Technical Research and Development Special fund(2016B010127006) ; International Scientific and Technological Cooperation Projects of Guangdong Province(2017A050501039) ; 61772144)
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000430903000006
EI入藏号20181404977366
引用统计
被引频次:135[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30026
专题光谱成像技术研究室
通讯作者Ren, Jinchang (jinchang.ren@strath.ac.uk)
作者单位1.Univ Strathclyde, Dept Elect & Elect Engn, Glasgow, Lanark, Scotland
2.China Univ Petr East China, Sch Geosci, Qingdao, Peoples R China
3.Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou, Guangdong, Peoples R China
4.Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Yan, Yijun,Ren, Jinchang,Sun, Genyun,et al. Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement[J]. PATTERN RECOGNITION,2018,79:65-78.
APA Yan, Yijun.,Ren, Jinchang.,Sun, Genyun.,Zhao, Huimin.,Han, Junwei.,...&Ren, Jinchang .(2018).Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement.PATTERN RECOGNITION,79,65-78.
MLA Yan, Yijun,et al."Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement".PATTERN RECOGNITION 79(2018):65-78.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Unsupervised image s(3187KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yan, Yijun]的文章
[Ren, Jinchang]的文章
[Sun, Genyun]的文章
百度学术
百度学术中相似的文章
[Yan, Yijun]的文章
[Ren, Jinchang]的文章
[Sun, Genyun]的文章
必应学术
必应学术中相似的文章
[Yan, Yijun]的文章
[Ren, Jinchang]的文章
[Sun, Genyun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。