OPT OpenIR  > 光谱成像技术实验室
Small target detection in infrared image using convolutional neural networks
Wang, Wanting1; Qin, Hanlin1; Cheng, Wenxiong1; Wang, Chunmei1; Leng, Hanbing2; Zhou, Huixin1; Qin, Hanlin (hlqin@mail.xidian.edu.cn)
2017
会议名称Applied Optics and Photonics China: Optical Sensing and Imaging Technology and Applications, AOPC 2017
会议录名称AOPC 2017: Optical Sensing and Imaging Technology and Applications
卷号10462
会议日期2017-06-04
会议地点Beijing, China
出版者SPIE
产权排序2
摘要

Infrared small target detection is an important research topic in the field of infrared image processing and has a major impact on applications in areas such as remote sensing, infrared imaging precise. Due to atmospheric scattering, refraction and the effect of the lens, the infrared detector to receive the target information very weak, it's difficult to detect the small target in complex background. In this paper, a novel small target detection method in a single infrared image is proposed based on deep convolutional neural network that is mainly using to extract the features of target, through the method can obtain more discriminative features of infrared image. Firstly, the off-line training of convolution kernel parameters using open data sets and simulated data sets, the result of preliminary training gives an initial convolution kernel, this step can reduce the time required for parameter training. Secondly, the input infrared image is preliminarily processed by the trained parameters to obtain the primary features of the infrared image, through the processing of the convolution kernel, a large number of feature information in different scales of the input image are obtained. Finally, selecting and merging the features, design the efficient characteristic information selection strategy, then fine-Tune the convolution parameters with the result information, by merging the feature graph can realize the output of the result target image. The experimental results demonstrated that compared with existing classical methods, the proposed method could greatly improve the quality of the results, more importantly, our method can directly achieve the end-To-end mapping between the input images and target detection results. © 2017 SPIE.

作者部门光谱成像技术实验室
DOI10.1117/12.2285689
收录类别EI ; ISTP
ISBN号9781510614055
语种英语
ISSN号0277786X
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/29902
专题光谱成像技术实验室
通讯作者Qin, Hanlin (hlqin@mail.xidian.edu.cn)
作者单位1.School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, 710071, China
2.Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119, China
推荐引用方式
GB/T 7714
Wang, Wanting,Qin, Hanlin,Cheng, Wenxiong,et al. Small target detection in infrared image using convolutional neural networks[C]:SPIE,2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Small target detecti(581KB)会议论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Wanting]的文章
[Qin, Hanlin]的文章
[Cheng, Wenxiong]的文章
百度学术
百度学术中相似的文章
[Wang, Wanting]的文章
[Qin, Hanlin]的文章
[Cheng, Wenxiong]的文章
必应学术
必应学术中相似的文章
[Wang, Wanting]的文章
[Qin, Hanlin]的文章
[Cheng, Wenxiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。