OPT OpenIR  > 光谱成像技术研究室
Sparse Learning with Stochastic Composite Optimization
Zhang, Weizhong1; Zhang, Lijun2; Jin, Zhongming1; Jin, Rong3; Cai, Deng1; Li, Xuelong4; Liang, Ronghua5; He, Xiaofei1
作者部门光学影像学习与分析中心
2017-06-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号39期号:6页码:1223-1236
产权排序4
摘要

In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/lambda T), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(root log(1/delta)/T with delta is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log (log (T)/delta)/lambda T).

文章类型Article
关键词Sparse Learning Stochastic Optimization Stochastic Composite Optimization
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2016.2578323
收录类别SCI ; EI
关键词[WOS]ONLINE ; ALGORITHMS ; RECOVERY ; GRADIENT
语种英语
WOS研究方向Computer Science ; Engineering
项目资助者National Basic Research Program of China (973 Program)(2013CB336500) ; National Natural Science Foundation of China(61233011) ; National Youth Topnotch Talent Support Program
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000401091200013
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28919
专题光谱成像技术研究室
作者单位1.Zhejiang Univ, Coll Comp Sci, State Key Lab CAD&CG, 388 Yuhang Tang Rd, Hangzhou 310058, Zhejiang, Peoples R China
2.Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China
3.Alibaba Grp, Seattle, WA 98057 USA
4.Chinese Acad Sci, State Key Lab Transicent Opt & Photon, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
5.Zhejiang Univ Technol, Coll Informat Engn, 288 Liuhe Rd, Hangzhou 310058, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Weizhong,Zhang, Lijun,Jin, Zhongming,et al. Sparse Learning with Stochastic Composite Optimization[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2017,39(6):1223-1236.
APA Zhang, Weizhong.,Zhang, Lijun.,Jin, Zhongming.,Jin, Rong.,Cai, Deng.,...&He, Xiaofei.(2017).Sparse Learning with Stochastic Composite Optimization.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,39(6),1223-1236.
MLA Zhang, Weizhong,et al."Sparse Learning with Stochastic Composite Optimization".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 39.6(2017):1223-1236.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Sparse Learning with(987KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Weizhong]的文章
[Zhang, Lijun]的文章
[Jin, Zhongming]的文章
百度学术
百度学术中相似的文章
[Zhang, Weizhong]的文章
[Zhang, Lijun]的文章
[Jin, Zhongming]的文章
必应学术
必应学术中相似的文章
[Zhang, Weizhong]的文章
[Zhang, Lijun]的文章
[Jin, Zhongming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。