Heterogeneous Face Recognition: A Common Encoding Feature Discriminant Approach | |
Gong, Dihong1; Li, Zhifeng1; Huang, Weilin1; Li, Xuelong2; Tao, Dacheng3 | |
作者部门 | 光学影像学习与分析中心 |
2017-05-01 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING
![]() |
ISSN | 1057-7149 |
卷号 | 26期号:5页码:2079-2089 |
产权排序 | 2 |
摘要 | Heterogeneous face recognition is an important, yet challenging problem in face recognition community. It refers to matching a probe face image to a gallery of face images taken from alternate imaging modality. The major challenge of heterogeneous face recognition lies in the great discrepancies between different image modalities. Conventional face feature descriptors, e.g., local binary patterns, histogram of oriented gradients, and scale-invariant feature transform, are mostly designed in a handcrafted way and thus generally fail to extract the common discriminant information from the heterogeneous face images. In this paper, we propose a new feature descriptor called common encoding model for heterogeneous face recognition, which is able to capture common discriminant information, such that the large modality gap can be significantly reduced at the feature extraction stage. Specifically, we turn a face image into an encoded one with the encoding model learned from the training data, where the difference of the encoded heterogeneous face images of the same person can be minimized. Based on the encoded face images, we further develop a discriminant matching method to infer the hidden identity information of the cross-modality face images for enhanced recognition performance. The effectiveness of the proposed approach is demonstrated (on several public-domain face datasets) in two typical heterogeneous face recognition scenarios: matching NIR faces to VIS faces and matching sketches to photographs. |
文章类型 | Article |
关键词 | Face Common Encoding Heterogeneous Face Recognition (Hfr) Learning Feature Descriptor |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TIP.2017.2651380 |
收录类别 | SCI ; EI |
关键词[WOS] | SPECTRAL REGRESSION ; SKETCH SYNTHESIS ; DESCRIPTOR ; FRAMEWORK |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
项目资助者 | BIC, Chinese Academy of Sciences(172644KYSB20160033) ; Australian Research Council(DP-140102164 ; Shenzhen Research Program(JCYJ20160510154736343) ; Guangdong Research Program(2015B010129013) ; Natural Science Foundation of Guangdong Province(2014A030313688 ; National Natural Science Foundation of China(61503367) ; CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology ; FT-130101457 ; 2015A030310289) ; LE-140100061) |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000399396400001 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28862 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China 2.Chinese Acad Sci, State Key Lab Transient Optic & Photon, Ctr Opt IMagery Anal & Learning OPTIMAL, Xian 710119, Peoples R China 3.Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, Darlington, NSW 2008, Australia |
推荐引用方式 GB/T 7714 | Gong, Dihong,Li, Zhifeng,Huang, Weilin,et al. Heterogeneous Face Recognition: A Common Encoding Feature Discriminant Approach[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2017,26(5):2079-2089. |
APA | Gong, Dihong,Li, Zhifeng,Huang, Weilin,Li, Xuelong,&Tao, Dacheng.(2017).Heterogeneous Face Recognition: A Common Encoding Feature Discriminant Approach.IEEE TRANSACTIONS ON IMAGE PROCESSING,26(5),2079-2089. |
MLA | Gong, Dihong,et al."Heterogeneous Face Recognition: A Common Encoding Feature Discriminant Approach".IEEE TRANSACTIONS ON IMAGE PROCESSING 26.5(2017):2079-2089. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Heterogeneous Face R(2527KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论