Learning Instance Correlation Functions for Multilabel Classification | |
Liu, Huawen1; Li, Xuelong2; Zhang, Shichao3 | |
作者部门 | 光学影像学习与分析中心 |
2017-02-01 | |
发表期刊 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
ISSN | 2168-2267 |
卷号 | 47期号:2页码:499-510 |
产权排序 | 2 |
摘要 | Multilabel learning has a wide range of potential applications in reality. It attracts a great deal of attention during the past years and has been extensively studied in many fields including image annotation and text categorization. Although many efforts have been made for multilabel learning, there are two challenging issues remaining, i.e., how to exploit the correlations and how to tackle the high-dimensional problems of multilabel data. In this paper, an effective algorithm is developed for multilabel classification with utilizing those data that are relevant to the targets. The key is the construction of a coefficient-based mapping between training and test instances, where the mapping relationship exploits the correlations among the instances, rather than the explicit relationship between the variables and the class labels of data. Further, a constraint, l(1)-norm penalty, is performed on the mapping relationship to make the model sparse, weakening the impacts of noisy data. Our empirical study on eight public datasets shows that the proposed method is more effective in comparing with the state-of-the-art multilabel classifiers. |
文章类型 | Article |
关键词 | l(1)-norm Instance-based Learning K-nearest Neighbors (Knns) Multilabel Classification Partial Least Square (Pls) Regression |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TCYB.2016.2519683 |
收录类别 | SCI ; EI |
关键词[WOS] | CANONICAL CORRELATION-ANALYSIS ; PARTIAL LEAST-SQUARES ; FEATURE-SELECTION ; LABEL CLASSIFICATION ; REGRESSION ; FORMULATION ; FRAMEWORK |
语种 | 英语 |
WOS研究方向 | Computer Science |
项目资助者 | China 973 Program(2013CB329404) ; National Science Foundation (NSF) of China(61572443 ; NSF of Zhejiang Province(LY14F020012) ; 61450001 ; 61170131) |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS记录号 | WOS:000395476200020 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28720 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Zhejiang Normal Univ, Dept Comp Sci, Jinhua 321004, Peoples R China 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China 3.Zhejiang Gongshang Univ, Dept Comp Sci, Hangzhou 310018, Zhejiang, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Huawen,Li, Xuelong,Zhang, Shichao. Learning Instance Correlation Functions for Multilabel Classification[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(2):499-510. |
APA | Liu, Huawen,Li, Xuelong,&Zhang, Shichao.(2017).Learning Instance Correlation Functions for Multilabel Classification.IEEE TRANSACTIONS ON CYBERNETICS,47(2),499-510. |
MLA | Liu, Huawen,et al."Learning Instance Correlation Functions for Multilabel Classification".IEEE TRANSACTIONS ON CYBERNETICS 47.2(2017):499-510. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Learning Instance Co(993KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论