OPT OpenIR  > 光谱成像技术研究室
Learning Instance Correlation Functions for Multilabel Classification
Liu, Huawen1; Li, Xuelong2; Zhang, Shichao3
作者部门光学影像学习与分析中心
2017-02-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号47期号:2页码:499-510
产权排序2
摘要

Multilabel learning has a wide range of potential applications in reality. It attracts a great deal of attention during the past years and has been extensively studied in many fields including image annotation and text categorization. Although many efforts have been made for multilabel learning, there are two challenging issues remaining, i.e., how to exploit the correlations and how to tackle the high-dimensional problems of multilabel data. In this paper, an effective algorithm is developed for multilabel classification with utilizing those data that are relevant to the targets. The key is the construction of a coefficient-based mapping between training and test instances, where the mapping relationship exploits the correlations among the instances, rather than the explicit relationship between the variables and the class labels of data. Further, a constraint, l(1)-norm penalty, is performed on the mapping relationship to make the model sparse, weakening the impacts of noisy data. Our empirical study on eight public datasets shows that the proposed method is more effective in comparing with the state-of-the-art multilabel classifiers.

文章类型Article
关键词l(1)-norm Instance-based Learning K-nearest Neighbors (Knns) Multilabel Classification Partial Least Square (Pls) Regression
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2016.2519683
收录类别SCI ; EI
关键词[WOS]CANONICAL CORRELATION-ANALYSIS ; PARTIAL LEAST-SQUARES ; FEATURE-SELECTION ; LABEL CLASSIFICATION ; REGRESSION ; FORMULATION ; FRAMEWORK
语种英语
WOS研究方向Computer Science
项目资助者China 973 Program(2013CB329404) ; National Science Foundation (NSF) of China(61572443 ; NSF of Zhejiang Province(LY14F020012) ; 61450001 ; 61170131)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000395476200020
引用统计
被引频次:47[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28720
专题光谱成像技术研究室
作者单位1.Zhejiang Normal Univ, Dept Comp Sci, Jinhua 321004, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
3.Zhejiang Gongshang Univ, Dept Comp Sci, Hangzhou 310018, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Liu, Huawen,Li, Xuelong,Zhang, Shichao. Learning Instance Correlation Functions for Multilabel Classification[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(2):499-510.
APA Liu, Huawen,Li, Xuelong,&Zhang, Shichao.(2017).Learning Instance Correlation Functions for Multilabel Classification.IEEE TRANSACTIONS ON CYBERNETICS,47(2),499-510.
MLA Liu, Huawen,et al."Learning Instance Correlation Functions for Multilabel Classification".IEEE TRANSACTIONS ON CYBERNETICS 47.2(2017):499-510.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Learning Instance Co(993KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Huawen]的文章
[Li, Xuelong]的文章
[Zhang, Shichao]的文章
百度学术
百度学术中相似的文章
[Liu, Huawen]的文章
[Li, Xuelong]的文章
[Zhang, Shichao]的文章
必应学术
必应学术中相似的文章
[Liu, Huawen]的文章
[Li, Xuelong]的文章
[Zhang, Shichao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。