OPT OpenIR  > 光谱成像技术研究室
Joint Dictionary Learning for Multispectral Change Detection
Lu, Xiaoqiang; Yuan, Yuan; Zheng, Xiangtao
作者部门光学影像学习与分析中心
2017-04-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号47期号:4页码:884-897
产权排序1
摘要

Change detection is one of the most important applications of remote sensing technology. It is a challenging task due to the obvious variations in the radiometric value of spectral signature and the limited capability of utilizing spectral information. In this paper, an improved sparse coding method for change detection is proposed. The intuition of the proposed method is that unchanged pixels in different images can be well reconstructed by the joint dictionary, which corresponds to knowledge of unchanged pixels, while changed pixels cannot. First, a query image pair is projected onto the joint dictionary to constitute the knowledge of unchanged pixels. Then reconstruction error is obtained to discriminate between the changed and unchanged pixels in the different images. To select the proper thresholds for determining changed regions, an automatic threshold selection strategy is presented by minimizing the reconstruction errors of the changed pixels. Adequate experiments on multispectral data have been tested, and the experimental results compared with the state- of- the- art methods prove the superiority of the proposed method. Contributions of the proposed method can be summarized as follows: 1) joint dictionary learning is proposed to explore the intrinsic information of different images for change detection. In this case, change detection can be transformed as a sparse representation problem. To the authors' knowledge, few publications utilize joint learning dictionary in change detection; 2) an automatic threshold selection strategy is presented, which minimizes the reconstruction errors of the changed pixels without the prior assumption of the spectral signature. As a result, the threshold value provided by the proposed method can adapt to different data due to the characteristic of joint dictionary learning; and 3) the proposed method makes no prior assumption of the modeling and the handling of the spectral signature, which can be adapted to different data.

文章类型Article
关键词Automatic Threshold Selection Change Detection Joint Dictionary Learning Multitemporal Remote Sensing
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2016.2531179
收录类别SCI
关键词[WOS]UNSUPERVISED CHANGE DETECTION ; HYPERSPECTRAL IMAGE CLASSIFICATION ; REMOTE-SENSING IMAGES ; FRAMEWORK ; KERNELS ; FUSION ; MODEL
语种英语
WOS研究方向Computer Science
项目资助者National Basic Research Program of China (973 Program)(2012CB719905) ; State Key Program of National Natural Science of China(61232010) ; National Natural Science Foundation of China(61472413) ; Open Research Fund of Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences(LSIT201408)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000396396700006
引用统计
被引频次:149[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28719
专题光谱成像技术研究室
作者单位Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Yuan, Yuan,Zheng, Xiangtao. Joint Dictionary Learning for Multispectral Change Detection[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(4):884-897.
APA Lu, Xiaoqiang,Yuan, Yuan,&Zheng, Xiangtao.(2017).Joint Dictionary Learning for Multispectral Change Detection.IEEE TRANSACTIONS ON CYBERNETICS,47(4),884-897.
MLA Lu, Xiaoqiang,et al."Joint Dictionary Learning for Multispectral Change Detection".IEEE TRANSACTIONS ON CYBERNETICS 47.4(2017):884-897.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Joint Dictionary Lea(3207KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
[Zheng, Xiangtao]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
[Zheng, Xiangtao]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
[Zheng, Xiangtao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。