OPT OpenIR  > 光谱成像技术研究室
Latent Semantic Minimal Hashing for Image Retrieval
Lu, Xiaoqiang; Zheng, Xiangtao; Li, Xuelong
作者部门光学影像学习与分析中心
2017
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号26期号:1页码:355-368
产权排序1
摘要

Hashing-based similarity search is an important technique for large-scale query-by-example image retrieval system, since it provides fast search with computation and memory efficiency. However, it is a challenge work to design compact codes to represent original features with good performance. Recently, a lot of unsupervised hashing methods have been proposed to focus on preserving geometric structure similarity of the data in the original feature space, but they have not yet fully refined image features and explored the latent semantic feature embedding in the data simultaneously. To address the problem, in this paper, a novel joint binary codes learning method is proposed to combine image feature to latent semantic feature with minimum encoding loss, which is referred as latent semantic minimal hashing. The latent semantic feature is learned based on matrix decomposition to refine original feature, thereby it makes the learned feature more discriminative. Moreover, a minimum encoding loss is combined with latent semantic feature learning process simultaneously, so as to guarantee the obtained binary codes are discriminative as well. Extensive experiments on several wellknown large databases demonstrate that the proposed method outperforms most state-of-the-art hashing methods.

文章类型Article
关键词Hashing Approximate Nearest Neighbor Latent Semantic Image Retrieval
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2016.2627801
收录类别SCI ; EI
关键词[WOS]SPARSE ; SEARCH ; OBJECT
语种英语
WOS研究方向Computer Science ; Engineering
项目资助者National Natural Science Foundation of China(61472413) ; Chinese Academy of Sciences(KGZD-EW-T03 ; Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences(LSIT201408) ; QYZDB-SSW-JSC015)
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000397221700002
引用统计
被引频次:122[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28647
专题光谱成像技术研究室
作者单位Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Zheng, Xiangtao,Li, Xuelong. Latent Semantic Minimal Hashing for Image Retrieval[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2017,26(1):355-368.
APA Lu, Xiaoqiang,Zheng, Xiangtao,&Li, Xuelong.(2017).Latent Semantic Minimal Hashing for Image Retrieval.IEEE TRANSACTIONS ON IMAGE PROCESSING,26(1),355-368.
MLA Lu, Xiaoqiang,et al."Latent Semantic Minimal Hashing for Image Retrieval".IEEE TRANSACTIONS ON IMAGE PROCESSING 26.1(2017):355-368.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Latent Semantic Mini(4306KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaoqiang]的文章
[Zheng, Xiangtao]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaoqiang]的文章
[Zheng, Xiangtao]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaoqiang]的文章
[Zheng, Xiangtao]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。