Video parsing via spatiotemporally analysis with images | |
Li, Xuelong![]() ![]() | |
作者部门 | 光学影像学习与分析中心 |
2016-10-01 | |
发表期刊 | MULTIMEDIA TOOLS AND APPLICATIONS
![]() |
ISSN | 1380-7501 |
卷号 | 75期号:19页码:11961-11976 |
产权排序 | 1 |
摘要 | Effective parsing of video through the spatial and temporal domains is vital to many computer vision problems because it is helpful to automatically label objects in video instead of manual fashion, which is tedious. Some literatures propose to parse the semantic information on individual 2D images or individual video frames, however, these approaches only take use of the spatial information, ignore the temporal continuity information and fail to consider the relevance of frames. On the other hand, some approaches which only consider the spatial information attempt to propagate labels in the temporal domain for parsing the semantic information of the whole video, yet the non-injective and non-surjective natures can cause the black hole effect. In this paper, inspirited by some annotated image datasets (e.g., Stanford Background Dataset, LabelMe, and SIFT-FLOW), we propose to transfer or propagate such labels from images to videos. The proposed approach consists of three main stages: I) the posterior category probability density function (PDF) is learned by an algorithm which combines frame relevance and label propagation from images. II) the prior contextual constraint PDF on the map of pixel categories through whole video is learned by the Markov Random Fields (MRF). III) finally, based on both learned PDFs, the final parsing results are yielded up to the maximum a posterior (MAP) process which is computed via a very efficient graph-cut based integer optimization algorithm. The experiments show that the black hole effect can be effectively handled by the proposed approach. |
文章类型 | Article |
关键词 | Semantic Video Parsing Transfer Learning Maximum a Posterior (Map) Inference Markov Random Felds (Mrf) Prior Contextual Constraint |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1007/s11042-015-2735-x |
收录类别 | SCI ; EI |
关键词[WOS] | ENERGY MINIMIZATION ; GRAPH CUTS ; SEGMENTATION ; ALGORITHMS |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
项目资助者 | National Basic Research Program of China (973 Program)(2012CB719905) ; National Natural Science Foundation of China(61472413) ; Chinese Academy of Sciences(LSIT201408) ; Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T03) |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000382678200021 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28254 |
专题 | 光谱成像技术研究室 |
通讯作者 | Lu, Xiaoqiang (luxq666666@gmail.com) |
作者单位 | Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xuelong,Mou, Lichao,Lu, Xiaoqiang,et al. Video parsing via spatiotemporally analysis with images[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2016,75(19):11961-11976. |
APA | Li, Xuelong,Mou, Lichao,Lu, Xiaoqiang,&Lu, Xiaoqiang .(2016).Video parsing via spatiotemporally analysis with images.MULTIMEDIA TOOLS AND APPLICATIONS,75(19),11961-11976. |
MLA | Li, Xuelong,et al."Video parsing via spatiotemporally analysis with images".MULTIMEDIA TOOLS AND APPLICATIONS 75.19(2016):11961-11976. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Video parsing via sp(1835KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论