OPT OpenIR  > 光谱成像技术研究室
DSets-DBSCAN: A Parameter-Free Clustering Algorithm
Hou, Jian1,2; Gao, Huijun3; Li, Xuelong4; Gao, Huijun (hjgao@hit.edu.cn)
作者部门光学影像学习与分析中心
2016-07-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号25期号:7页码:3182-3193
产权排序4
摘要

Clustering image pixels is an important image segmentation technique. While a large amount of clustering algorithms have been published and some of them generate impressive clustering results, their performance often depends heavily on user-specified parameters. This may be a problem in the practical tasks of data clustering and image segmentation. In order to remove the dependence of clustering results on user-specified parameters, we investigate the characteristics of existing clustering algorithms and present a parameter-free algorithm based on the DSets (dominant sets) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms. First, we apply histogram equalization to the pairwise similarity matrix of input data and make DSets clustering results independent of user-specified parameters. Then, we extend the clusters from DSets with DBSCAN, where the input parameters are determined based on the clusters from DSets automatically. By merging the merits of DSets and DBSCAN, our algorithm is able to generate the clusters of arbitrary shapes without any parameter input. In both the data clustering and image segmentation experiments, our parameter-free algorithm performs better than or comparably with other algorithms with careful parameter tuning.

文章类型Article
关键词Clustering Similarity Matrix Histogram Equalization Dominant Sets Parameter-free
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2016.2559803
收录类别SCI ; EI
关键词[WOS]IMAGE SEGMENTATION ; DOMINANT SETS ; NUMBER
语种英语
WOS研究方向Computer Science ; Engineering
项目资助者China Scholarship Council ; National Natural Science Foundation of China(61473045)
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000384521200001
引用统计
被引频次:173[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28249
专题光谱成像技术研究室
通讯作者Gao, Huijun (hjgao@hit.edu.cn)
作者单位1.Bohai Univ, Coll Engn, Jinzhou 121013, Peoples R China
2.Univ Ca Foscari Venezia, European Ctr Living Technol, I-30124 Venice, Italy
3.Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150001, Peoples R China
4.Chinese Acad Sci, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Hou, Jian,Gao, Huijun,Li, Xuelong,et al. DSets-DBSCAN: A Parameter-Free Clustering Algorithm[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2016,25(7):3182-3193.
APA Hou, Jian,Gao, Huijun,Li, Xuelong,&Gao, Huijun .(2016).DSets-DBSCAN: A Parameter-Free Clustering Algorithm.IEEE TRANSACTIONS ON IMAGE PROCESSING,25(7),3182-3193.
MLA Hou, Jian,et al."DSets-DBSCAN: A Parameter-Free Clustering Algorithm".IEEE TRANSACTIONS ON IMAGE PROCESSING 25.7(2016):3182-3193.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
DSets-DBSCAN- A Para(5402KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Jian]的文章
[Gao, Huijun]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Hou, Jian]的文章
[Gao, Huijun]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Hou, Jian]的文章
[Gao, Huijun]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。