OPT OpenIR  > 光谱成像技术研究室
Pixel-to-Model Distance for Robust Background Reconstruction
Yang, Lu1; Cheng, Hong1; Su, Jianan1; Li, Xuelong2
作者部门光学影像学习与分析中心
2016-05-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
ISSN1051-8215
卷号26期号:5页码:903-916
产权排序2
摘要Background information is crucial for many video surveillance applications such as object detection and scene understanding. In this paper, we present a novel pixel-to-model (P2M) paradigm for background modeling and restoration in surveillance scenes. In particular, the proposed approach models the background with a set of context features for each pixel, which are compressively sensed from local patches. We determine whether a pixel belongs to the background according to the minimum P2M distance, which measures the similarity between the pixel and its background model in the space of compressive local descriptors. The pixel feature descriptors of the background model are properly updated with respect to the minimum P2M distance. Meanwhile, the neighboring background model will be renewed according to the maximum P2M distance to handle ghost holes. The P2M distance plays an important role of background reliability in the 3-D spatial-temporal domain of surveillance videos, leading to the robust background model and recovered background videos. We applied the proposed P2M distance for foreground detection and background restoration on synthetic and real-world surveillance videos. Experimental results show that the proposed P2M approach outperforms the state-of-the-art approaches both in indoor and outdoor surveillance scenes.
文章类型Article
关键词Background Modeling Background Restoration Local Context Descriptor Pixel-to-model (P2m) Distance Video Surveillance
WOS标题词Science & Technology ; Technology
DOI10.1109/TCSVT.2015.2424052
收录类别SCI ; EI
关键词[WOS]FOREGROUND OBJECT DETECTION ; GAUSSIAN MIXTURE MODEL ; CODEBOOK MODEL ; ENERGY MINIMIZATION ; VIDEO SURVEILLANCE ; MOTION DETECTION ; SUBTRACTION ; SEGMENTATION ; EFFICIENT ; PREDICTION
语种英语
WOS研究方向Engineering
项目资助者National Natural Science Foundation of China(61305033 ; Key Research Program through the Chinese Academy of Sciences(KGZD-EW-T03) ; Fundamental Research Funds for the Central Universities(ZYGX2013J088) ; Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ; 61273256 ; 61125106)
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000375707500009
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28132
专题光谱成像技术研究室
作者单位1.Univ Elect Sci & Technol China, Ctr Robot, Chengdu 611731, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Yang, Lu,Cheng, Hong,Su, Jianan,et al. Pixel-to-Model Distance for Robust Background Reconstruction[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2016,26(5):903-916.
APA Yang, Lu,Cheng, Hong,Su, Jianan,&Li, Xuelong.(2016).Pixel-to-Model Distance for Robust Background Reconstruction.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,26(5),903-916.
MLA Yang, Lu,et al."Pixel-to-Model Distance for Robust Background Reconstruction".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 26.5(2016):903-916.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Pixel-to-Model Dista(6615KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Lu]的文章
[Cheng, Hong]的文章
[Su, Jianan]的文章
百度学术
百度学术中相似的文章
[Yang, Lu]的文章
[Cheng, Hong]的文章
[Su, Jianan]的文章
必应学术
必应学术中相似的文章
[Yang, Lu]的文章
[Cheng, Hong]的文章
[Su, Jianan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。