OPT OpenIR  > 光谱成像技术研究室
Texture feature extraction of hyper-spectral image with three-dimensional gray-level co-occurrence
Wang, Shuang; Hu, Bingliang; Wang, Feng
2015-03-01
发表期刊Journal of Information and Computational Science
卷号12期号:4页码:1439-1448
摘要To extract useful information of hyper-spectral images effectively, a kind of texture feature extraction method using three-dimensional Gray-level Co-occurrence Matrix (3D GLCM) is proposed in this paper. The method extracts the texture features of hyper-spectral image as a pseudo data cube that combines the two-dimensional space data with one-dimensional spectrum data, instead of each band computed alone. Moreover, the parameters related to building the 3D GLCM are all optimized. To obtain the features both in spectral space and spatial space, the moving directions of texture window are extended to the spectral space, namely that four directions in two-dimensional (2D) image space are expanded to thirteen ones in three-dimensional (3D) space. Then, the Jeffreys-matusita (JM) distance based on the class separable criterion is employed to select the most suitable window size for each object. Finally, the multi-scale texture features are used for classification. The experiments also show that, compared with the traditional methods, the feature extraction method is more effective in describing objects and has better classification accuracy. ©, 2015, Binary Information Press
收录类别EI
语种英语
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/27328
专题光谱成像技术研究室
推荐引用方式
GB/T 7714
Wang, Shuang,Hu, Bingliang,Wang, Feng. Texture feature extraction of hyper-spectral image with three-dimensional gray-level co-occurrence[J]. Journal of Information and Computational Science,2015,12(4):1439-1448.
APA Wang, Shuang,Hu, Bingliang,&Wang, Feng.(2015).Texture feature extraction of hyper-spectral image with three-dimensional gray-level co-occurrence.Journal of Information and Computational Science,12(4),1439-1448.
MLA Wang, Shuang,et al."Texture feature extraction of hyper-spectral image with three-dimensional gray-level co-occurrence".Journal of Information and Computational Science 12.4(2015):1439-1448.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Texture feature extr(2798KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Shuang]的文章
[Hu, Bingliang]的文章
[Wang, Feng]的文章
百度学术
百度学术中相似的文章
[Wang, Shuang]的文章
[Hu, Bingliang]的文章
[Wang, Feng]的文章
必应学术
必应学术中相似的文章
[Wang, Shuang]的文章
[Hu, Bingliang]的文章
[Wang, Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。