OPT OpenIR  > 光谱成像技术研究室
MR image super-resolution via manifold regularized sparse learning
Lu, Xiaoqiang; Huang, Zihan; Yuan, Yuan
2015-08-25
发表期刊NEUROCOMPUTING
卷号162页码:96-104
摘要Single image super-resolution (SR) has been shown useful in Magnetic Resonance (MR) image based diagnosis, where the image resolution is still limited. The basic goal of single image SR is to produce a high-resolution (HR) image from corresponding low-resolution (LR) image. However, most existing SR algorithms often fail to: (1) reflect the intrinsic structure between MR images and (2) exploit the intra-patient information of MR images. In fact, MR images are more likely to vary along a low dimensional submanifold, which can be embedded in the high dimensional space. It has also been shown that the structure information of MR images and the priors of the MR images of different modality are important for improving the image resolution. To take full advantage of manifold structure information and intra-patient prior of MR images, a novel single image super-resolution algorithm for MR images is proposed in this paper. Compared with the existing works, the proposed algorithm has the following merits: (1) the proposed sparse coding based algorithm integrates manifold constraints to handle the inverse problem in MR image SR; (2) the manifold structure of the intra-patient MR image is considered for image SR; and (3) the topological structure of the intra-patient MR image can be preserved to improve the reconstructed result. Experiments show that the proposed algorithm is more effective than the state-of-the-art algorithms. (C) 2015 Elsevier B.V. All rights reserved.
文章类型Article
关键词Sparse Learning Manifold Regularization Super-resolution Magnetic Resonance Imaging (Mri)
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2015.03.065
收录类别SCI ; EI
关键词[WOS]NONLINEAR DIMENSIONALITY REDUCTION ; RECONSTRUCTION ; RECOGNITION ; REGRESSION
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000356125200010
引用统计
被引频次:38[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/25072
专题光谱成像技术研究室
作者单位Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Huang, Zihan,Yuan, Yuan. MR image super-resolution via manifold regularized sparse learning[J]. NEUROCOMPUTING,2015,162:96-104.
APA Lu, Xiaoqiang,Huang, Zihan,&Yuan, Yuan.(2015).MR image super-resolution via manifold regularized sparse learning.NEUROCOMPUTING,162,96-104.
MLA Lu, Xiaoqiang,et al."MR image super-resolution via manifold regularized sparse learning".NEUROCOMPUTING 162(2015):96-104.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
MR image super-resol(1763KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaoqiang]的文章
[Huang, Zihan]的文章
[Yuan, Yuan]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaoqiang]的文章
[Huang, Zihan]的文章
[Yuan, Yuan]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaoqiang]的文章
[Huang, Zihan]的文章
[Yuan, Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。