OPT OpenIR  > 光谱成像技术研究室
Transfer Learning for Visual Categorization: A Survey
Shao, Ling1,2; Zhu, Fan2; Li, Xuelong3
2015-05-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号26期号:5页码:1019-1034
摘要Regular machine learning and data mining techniques study the training data for future inferences under a major assumption that the future data are within the same feature space or have the same distribution as the training data. However, due to the limited availability of human labeled training data, training data that stay in the same feature space or have the same distribution as the future data cannot be guaranteed to be sufficient enough to avoid the over-fitting problem. In real-world applications, apart from data in the target domain, related data in a different domain can also be included to expand the availability of our prior knowledge about the target future data. Transfer learning addresses such cross-domain learning problems by extracting useful information from data in a related domain and transferring them for being used in target tasks. In recent years, with transfer learning being applied to visual categorization, some typical problems, e.g., view divergence in action recognition tasks and concept drifting in image classification tasks, can be efficiently solved. In this paper, we survey state-of-the-art transfer learning algorithms in visual categorization applications, such as object recognition, image classification, and human action recognition.
文章类型Article
关键词Action Recognition Image Classification Machine Learning Object Recognition Survey Transfer Learning Visual Categorization
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2014.2330900
收录类别SCI ; EI
关键词[WOS]HUMAN ACTION RECOGNITION ; VIEW ACTION RECOGNITION ; DOMAIN ADAPTATION ; IMAGE CLASSIFICATION ; INVARIANT ANALYSIS ; FUZZY SYSTEM ; KERNEL ; REPRESENTATION ; MOTION ; HISTOGRAMS
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000353122400010
引用统计
被引频次:562[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/25044
专题光谱成像技术研究室
作者单位1.Nanjing Univ Informat Sci & Technol, Coll Elect & Informat Engn, Nanjing 210044, Jiangsu, Peoples R China
2.Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
3.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Shao, Ling,Zhu, Fan,Li, Xuelong. Transfer Learning for Visual Categorization: A Survey[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2015,26(5):1019-1034.
APA Shao, Ling,Zhu, Fan,&Li, Xuelong.(2015).Transfer Learning for Visual Categorization: A Survey.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,26(5),1019-1034.
MLA Shao, Ling,et al."Transfer Learning for Visual Categorization: A Survey".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 26.5(2015):1019-1034.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Transfer Learning fo(3181KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao, Ling]的文章
[Zhu, Fan]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Shao, Ling]的文章
[Zhu, Fan]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Shao, Ling]的文章
[Zhu, Fan]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。