Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images | |
Lu, Xiaoqiang1![]() ![]() | |
作者部门 | 光学影像学习与分析中心 |
2013-07-01 | |
发表期刊 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
ISSN | 0196-2892 |
卷号 | 51期号:7页码:4009-4018 |
产权排序 | 1 |
摘要 | Hyperspectral image destriping is a challenging and promising theme in remote sensing. Striping noise is a ubiquitous phenomenon in hyperspectral imagery, which may severely degrade the visual quality. A variety of methods have been proposed to effectively alleviate the effects of the striping noise. However, most of them fail to take full advantage of the high spectral correlation between the observation subimages in distinct bands and consider the local manifold structure of the hyperspectral data space. In order to remedy this drawback, in this paper, a novel graph-regularized low-rank representation (LRR) destriping algorithm is proposed by incorporating the LRR technique. To obtain desired destriping performance, two sides of performing destriping are included: 1) To exploit the high spectral correlation between the observation subimages in distinct bands, the technique of LRR is first utilized for destriping, and 2) to preserve the intrinsic local structure of the original hyperspectral data, the graph regularizer is incorporated in the objective function. The experimental results and quantitative analysis demonstrate that the proposed method can both remove striping noise and achieve cleaner and higher contrast reconstructed results. |
文章类型 | Article |
关键词 | Destriping Graph Regularizer Hyperspectral Image Low-rank Representation (Lrr) Spectral Correlation |
WOS标题词 | Science & Technology ; Physical Sciences ; Technology |
DOI | 10.1109/TGRS.2012.2226730 |
收录类别 | SCI ; EI |
关键词[WOS] | LANDSAT MSS IMAGES ; HISTOGRAM-MODIFICATION ; STRIPING REMOVAL ; MODIS DATA ; NOISE ; ALGORITHM ; REDUCTION ; TRANSFORM ; PURSUIT |
语种 | 英语 |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
项目资助者 | National Basic Research Program of China (973 Program)(2011CB707104) ; National Natural Science Foundation of China(61100079 ; Postdoctoral Science Foundation of China(Y11I971400) ; 61172143) |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000320942600018 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/23181 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Chinese Acad Sci, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning, Xian 710119, Peoples R China 2.Hubei Univ, Fac Math & Comp Sci, Wuhan 430062, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Xiaoqiang,Wang, Yulong,Yuan, Yuan. Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2013,51(7):4009-4018. |
APA | Lu, Xiaoqiang,Wang, Yulong,&Yuan, Yuan.(2013).Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,51(7),4009-4018. |
MLA | Lu, Xiaoqiang,et al."Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 51.7(2013):4009-4018. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Graph-Regularized Lo(1427KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论