OPT OpenIR  > 光谱成像技术研究室
Hierarchical incorporation of shape and shape dynamics for flying bird detection
Zhang, Jun1; Xu, Qunyu1; Cao, Xianbin1; Yan, Pingkun2; Li, Xuelong2
作者部门光学影像学习与分析中心
2014-05-05
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号131页码:179-190
摘要Flying bird detection (FBD) is critical in avoiding bird-aircraft collisions. Most existing approaches rely on motion detection to identify the flying bird, since it is a typical moving object. However, when there exist other moving objects, those methods often fail to distinguish flying birds from those objects due to the insufficiency of feature description. In this paper, we introduce a novel hierarchical feature model exploiting shape and shape dynamics to improve the ability of representing a flying bird, and then apply it to the FBD problem. As the shape of a flying bird is very distinctive in geometric structures and could provide discriminating spatial information, an improved shape context feature descriptor is proposed at the lower level to capture the spatial relations in bird shape. Then the shape descriptor is extended into the spatio-temporal domain and a shape dynamics description is built at the higher level, in which a 4-state Markovian model is adopted and is learned from training sequences. Moreover, to build a mapping from the lower level to the higher level of the hierarchy, a shape similarity index (SSI) based matching mechanism is designed. We apply these two-level features for detecting flying bird for improved safety of aircrafts flying at low-altitude. The experimental results show that the proposed method is effective and outperforms three other existing vision-based FBD approaches. (C) 2013 Elsevier B.V. All rights reserved.
文章类型Article
关键词Bird-aircraft Collisions Flying Bird Detection Hierarchical Feature Shape Similarity Shape Dynamics
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2013.10.026
收录类别SCI ; EI
关键词[WOS]RECOGNITION
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000332805700020
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/22399
专题光谱成像技术研究室
作者单位1.Beihang Univ, Sch Elect & Informat Engn, Natl Key Lab CNS ATM, Beijing 100191, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shanxi, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jun,Xu, Qunyu,Cao, Xianbin,et al. Hierarchical incorporation of shape and shape dynamics for flying bird detection[J]. NEUROCOMPUTING,2014,131:179-190.
APA Zhang, Jun,Xu, Qunyu,Cao, Xianbin,Yan, Pingkun,&Li, Xuelong.(2014).Hierarchical incorporation of shape and shape dynamics for flying bird detection.NEUROCOMPUTING,131,179-190.
MLA Zhang, Jun,et al."Hierarchical incorporation of shape and shape dynamics for flying bird detection".NEUROCOMPUTING 131(2014):179-190.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hierarchical incorpo(6834KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Jun]的文章
[Xu, Qunyu]的文章
[Cao, Xianbin]的文章
百度学术
百度学术中相似的文章
[Zhang, Jun]的文章
[Xu, Qunyu]的文章
[Cao, Xianbin]的文章
必应学术
必应学术中相似的文章
[Zhang, Jun]的文章
[Xu, Qunyu]的文章
[Cao, Xianbin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。