OPT OpenIR  > 光谱成像技术研究室
Sparse representation for blind image quality assessment
He, Lihuo; Tao, Dacheng; Li, Xuelong; Gao, Xinbo
2012
会议名称2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
会议录名称2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
页码1146-1153
会议日期June 16, 2012 - June 21, 2012
会议地点Providence, RI, United states
出版地United States
出版者IEEE Computer Society, 2001 L Street N.W., Suite 700, Washington, DC 20036-4928, United States
产权排序3
摘要Blind image quality assessment (BIQA) is an important yet difficult task in image processing related applications. Existing algorithms for universal BIQA learn a mapping from features of an image to the corresponding subjective quality or divide the image into different distortions before mapping. Although these algorithms are promising, they face the following problems: 1) they require a large number of samples (pairs of distorted image and its subjective quality) to train a robust mapping; 2) they are sensitive to different datasets; and 3) they have to be retrained when new training samples are available. In this paper, we introduce a simple yet effective algorithm based upon the sparse representation of natural scene statistics (NSS) feature. It consists of three key steps: extracting NSS features in the wavelet domain, representing features via sparse coding, and weighting differential mean opinion scores by the sparse coding coefficients to obtain the final visual quality values. Thorough experiments on standard databases show that the proposed algorithm outperforms representative BIQA algorithms and some full-reference metrics.
作者部门光学影像分析与学习中心
收录类别CPCI(ISTP) ; EI
ISBN号9781467312264
语种英语
ISSN号10636919
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/20542
专题光谱成像技术研究室
推荐引用方式
GB/T 7714
He, Lihuo,Tao, Dacheng,Li, Xuelong,et al. Sparse representation for blind image quality assessment[C]. United States:IEEE Computer Society, 2001 L Street N.W., Suite 700, Washington, DC 20036-4928, United States,2012:1146-1153.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Sparse representatio(359KB) 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Lihuo]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[He, Lihuo]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[He, Lihuo]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。